Skip to main content
Log in

Quinoline alkaloids as intercalative topoisomerase inhibitors

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Quinoline alkaloids are abundant in the Rutaceae, and many have exhibited cytotoxic activity. Because structurally related antitumor alkaloids such as camptothecin and fagaronine are known to function as intercalative topoisomerase poisons, it is hypothesized that cytotoxic Stauranthus alkaloids may also serve as intercalative topoisomerase inhibitors. To test this hypothesis theoretically, ten Stauranthus quinoline alkaloids were examined for potential intercalation into DNA using a molecular docking approach. Four of the alkaloids (stauranthine, skimmianine, 3′,6′-dihydroxy-3′,6′-dihydrostauranthine, and trans-3′,4′-dihydroxy-3′,4′-dihydrostauranthine) were able to intercalatively dock consistently into DNA. In order to probe the intermolecular interactions that may be responsible for intercalation of these quinoline alkaloids, density functional calculations have been carried out using both the B3LYP and M06 functionals. M06 calculations indicated favorable π–π interactions between either skimmianine or stauranthine and the guanine–cytosine base pair. Furthermore, the lowest-energy face-to-face orientation of stauranthine with guanine is consistent with favorable dipole–dipole orientations, favorable electrostatic interactions, and favorable frontier molecular orbital interactions. Likewise, the lowest-energy face-to-face orientation of stauranthine with the guanine–cytosine base pair reveals favorable electrostatic interactions as well as frontier molecular orbital interactions. Thus, not only can quinoline alkaloids dock intercalatively into DNA, but the docked orientations are also electronically favorable.

Lowest-energy face-to-face π–π interaction between stauranthine and guanine

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wink M (2007) Alkaloids 64:1–47

    CAS  Google Scholar 

  2. Liu LF (1989) Annu Rev Biochem 58:351–375

    Article  CAS  Google Scholar 

  3. Wilstermann AM, Osheroff N (2003) Curr Top Med Chem 3:321–338

    Article  CAS  Google Scholar 

  4. Pommier Y, Pourquier P, Fan Y, Strumberg D (1998) Biochim Biophys Acta 1400:83–106

    CAS  Google Scholar 

  5. Burden DA, Osheroff N (1998) Biochim Biophys Acta 1400:139–154

    CAS  Google Scholar 

  6. Li QY, Zu YG, Shi RZ, Yao LP (2006) Curr Med Chem 13:2021–2039

    Article  CAS  Google Scholar 

  7. Wang LK, Johnson RK, Hecht SM (1993) Chem Res Toxicol 6:813–818

    Article  CAS  Google Scholar 

  8. Fox ME, Smith PJ (1990) Cancer Res 50:5813–5818

    CAS  Google Scholar 

  9. Stiborova M, Rupertova M, Schmeiser HH, Frei E (2006) Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 150:13–23

    CAS  Google Scholar 

  10. Bonjean K, De Pauw-Gillet MC, Defresne MP, Colson P, Houssier C, Dassonneville L, Bailly C, Greimers R, Wright C, Quetin-Leclercq J, Tits M, Angenot L (1998) Biochemistry 37:5136–5146

    Article  CAS  Google Scholar 

  11. Seigler DS (1977) Plant systematic and alkaloids. In: Manske RHF (ed) The alkaloids, vol XVI. Academic, New York, pp 1–82

    Google Scholar 

  12. Hu J, Zhang WD, Shen YH, Zhang C, Xu L, Liu RH, Wang B, Xu XK (2007) Biochem Syst Ecol 35:114–117

    Article  CAS  Google Scholar 

  13. Boyd DR, Sharma ND, Loke PL, Malone JF, McRoberts WC, Hamilton JTG (2007) Org Biomol Chem 5:2983–2991

    Article  CAS  Google Scholar 

  14. Svoboda GH, Poore GA, Simpson PJ, Boder GB (1966) J Pharm Sci 55:758–768

    Article  CAS  Google Scholar 

  15. Wu TS, Wang ML, Jong TT, McPhail AT, McPhail DR, Lee KH (1989) J Nat Prod 52:1284–1289

    Article  CAS  Google Scholar 

  16. Cui B, Chai H, Dong Y, Horgen FD, Hansen B, Madulid DA, Soejarto DD, Farnsworth NR, Cordell GA, Pezzuto JM, Kinghorn AD (1999) Phytochemistry 52:95–98

    Article  CAS  Google Scholar 

  17. Chaturvedula VSP, Schilling JK, Miller JS, Andriantsiferana R, Rasamison VE, Kingston DGI (2003) J Nat Prod 66:532–534

    Article  CAS  Google Scholar 

  18. Chen JJ, Fang HY, Duh CY, Chen IS (2005) Planta Med 71:470–475

    Article  CAS  Google Scholar 

  19. Jansen O, Akhmedjanova V, Angenot L, Balansard G, Chariot A, Ollivier E, Tits M, Frédérich M (2006) J Ethnopharmacol 105:241–245

    Article  CAS  Google Scholar 

  20. Prescott TAK, Sadler IH, Kiapranis R, Maciver SK (2007) J Ethnopharmacol 109:289–294

    Article  CAS  Google Scholar 

  21. Kaczmarek L, Peczyńska-Czoch W, Osiadacz J, Mordarski M, Sokalski WA, Boratński J, Marcinkowska E, Glazman-Kuśnierczyk H, Radzikowski C (1999) Bioorg Med Chem 7:2457–2464

    Article  CAS  Google Scholar 

  22. Osiadacz J, Majka J, Czarnecki K, Peczyńska-Czoch W, Zakrzewska-Czerwińska J, Kaczmarek Ł, Sokalski WA (2000) Bioorg Med Chem 8:937-943

    Google Scholar 

  23. Chen YL, Hung HM, Lu CM, Li KC, Tzeng CC (2004) Bioorg Med Chem 12:6539–6542

    Article  CAS  Google Scholar 

  24. Carney JR, Scheuer PJ, Kelly-Borges M (1993) Tetrahedron 49(38):8483–8486

    Article  CAS  Google Scholar 

  25. Molinski TF (1993) Chem Rev 93:1825–1838

    Article  CAS  Google Scholar 

  26. McDonald LA, Eldredge GS, Barrows LR, Ireland CM (1994) J Med Chem 37:3819–3827

    Article  CAS  Google Scholar 

  27. Dias N, Vezin H, Lansiaux A, Bailly C (2005) Top Curr Chem 253:89–108

    CAS  Google Scholar 

  28. Setzer WN, Setzer MC, Schmidt JM, Moriarity DM, Vogler B, Reeb S, Holmes AM, Haber WA (2000) Planta Med 66:493–494

    Article  CAS  Google Scholar 

  29. Setzer WN, Vogler B, Bates RB, Schmidt JM, Dicus CW, Nakkiew P, Haber WA (2003) Phytochem Anal 14:54–59

    Article  CAS  Google Scholar 

  30. Nunn CM, Van Meervelt L, Zhang SD, Moore MH, Kennard O (1991) J Mol Biol 222:167–177

    Article  CAS  Google Scholar 

  31. Dautant A, Langlois d’Estaintot B, Gallois B, Brown T, Hunter WN (1995) Nucleic Acids Res 23:1710–1716

    Article  CAS  Google Scholar 

  32. Berger I, Su L, Spitzner JR, Kang C, Burke TG, Rich A (1995) Nucleic Acids Res 23:4488–4494

    Article  CAS  Google Scholar 

  33. Gao YG, Wang AH (1995) J Biomol Struct Dyn 13:103–117

    CAS  Google Scholar 

  34. Adams A, Guss JM, Collyer CA, Denny WA, Wakelin LPG (1999) Biochemistry 38:9221–9233

    Article  CAS  Google Scholar 

  35. Robinson H, Gao YG, Yang XL, Sanishvili R, Joachimiak A, Wang AHJ (2001) Biochemistry 40:5587–5592

    Article  CAS  Google Scholar 

  36. Smith CK, Davies GJ, Dodson EJ, Moore MH (1995) Biochemistry 34:415–425

    Article  CAS  Google Scholar 

  37. Hu GG, Shui X, Leng F, Priebe W, Chaires JB, Williams LD (1997) Biochemistry 36:5940–5946

    Article  CAS  Google Scholar 

  38. Lisgarten JN, Coll M, Portugal J, Wright CW, Aymami J (2002) Nature Struct Biol 9:57–60

    Article  CAS  Google Scholar 

  39. Canals A, Purciolas M, Aymami J, Coll M (2005) Acta Crystallogr Sect D 61:1009–1012

    Article  CAS  Google Scholar 

  40. Williams HEL, Colgrave ML, Searle MS (2002) Eur J Biochem 269:1726–1733

    Article  CAS  Google Scholar 

  41. Robinson H, Priebe W, Chaires JB, Wang AH (1997) Biochemistry 36:8663–8670

    Article  CAS  Google Scholar 

  42. Staker BL, Hjerrild K, Feese MD, Behnke CA, Burgin AB, Stewart LJ (2002) Proc Natl Acad Sci USA 99:15387–15392

    Article  CAS  Google Scholar 

  43. Staker BL, Feese MD, Cushman M, Pommier Y, Zembower D, Stewart L, Burgin AB (2005) J Med Chem 48:2336–2345

    Article  CAS  Google Scholar 

  44. Lauria A, Ippolito M, Almerico AM (2007) J Mol Model 13:393–400

    Article  CAS  Google Scholar 

  45. Bhowmik S, Bagchi A, Ghosh R (2008) Int J Integr Biol 2:8–14

    CAS  Google Scholar 

  46. Byler KG (2001) Frontier molecular orbital interactions between intercalating quinoline alkaloids and DNA base pairs: an ab initio investigation. MS Thesis, University of Alabama in Huntsville

    Google Scholar 

  47. Nakatani K, Matsuno T, Adachi K, Hagihara S, Saito I (2001) J Am Chem Soc 123:5695–5702

    Article  CAS  Google Scholar 

  48. Řeha D, Kabeláč M, Ryjáček F, Šponer J, Šponer JE, Elstner M, Suhai S, Hobza P (2002) J Am Chem Soc 124:3366–3376

    Article  CAS  Google Scholar 

  49. Dračinský M, Castaño O (2004) Phys Chem Chem Phys 6:1799–1805

    Article  CAS  Google Scholar 

  50. El-Gogary TM, Koehler G (2007) THEOCHEM 808:97–109

    Article  CAS  Google Scholar 

  51. Kumar A, Elstner M, Suhai S (2003) Int J Quant Chem 95:44–59

    Article  CAS  Google Scholar 

  52. Riahi S, Ganjali MR, Dinarvand R, Karamdoust S, Bagherzadeh K, Norouzi P (2008) Chem Biol Drug Des 71:474–482

    Article  CAS  Google Scholar 

  53. Jena NR, Mishra PC (2007) J Mol Model 13:267–274

    Article  CAS  Google Scholar 

  54. Hobza P, Šponer J (1999) Chem Rev 99:3247–3276

    Article  CAS  Google Scholar 

  55. Hunter CA, Lawson KR, Perkins J, Urch CJ (2001) J Chem Soc Perkin Trans 2:651–669

    Google Scholar 

  56. Tsuzuki S, Honda K, Uchimaru T, Mikami M, Tanabe K (2002) J Am Chem Soc 124:104–112

    Article  CAS  Google Scholar 

  57. Sinnokrot MO, Valeev EF, Sherrill CD (2002) J Am Chem Soc 124:10887–10893

    Article  CAS  Google Scholar 

  58. Sato T, Tsuneda T, Hirao K (2005) J Chem Phys 123:104307

    Article  CAS  Google Scholar 

  59. Podeszwa R, Bukowski R, Szalewicz K (2006) J Phys Chem A 110:10345–10354

    Article  CAS  Google Scholar 

  60. DiStasio RA, von Helden G, Steele RP, Head-Gordon M (2007) Chem Phys Lett 437:277–283

    Article  CAS  Google Scholar 

  61. Jha PC, Rinkevicius Z, Ågren H, Seal P, Chakrabarti S (2008) Phys Chem Chem Phys 10:2715–2712

    Article  CAS  Google Scholar 

  62. Bludský O, Rubeš M, Soldán P, Nachtigall P (2008) J Chem Phys 128:114102

    Article  CAS  Google Scholar 

  63. Pitoňák M, Riley KE, Neogrády P, Hobza P (2008) Chem Phys Chem 9:1636–1644

    Google Scholar 

  64. Dabkowska I, Gonzalez HV, Jurečka P, Hobza P (2005) J Phys Chem A 109:1131–1136

    Article  CAS  Google Scholar 

  65. Cooper VR, Thonhauser T, Langreth DC (2008) J Chem Phys 128:204102

    Article  CAS  Google Scholar 

  66. Šponer J, Riley KE, Hobza P (2008) Phys Chem Chem Phys 10:2595–2610

    Article  CAS  Google Scholar 

  67. Jaffe RL, Smith GD (1996) J Chem Phys 105:2780–2788

    Article  CAS  Google Scholar 

  68. Hobza P, Selzle HL, Schlag EW (1996) J Phys Chem 100:18790–18794

    Article  CAS  Google Scholar 

  69. Tsuzuki S, Uchimaru T, Matsumura K, Mikami M, Tanabe K (2000) Chem Phys Lett 319:547–554

    Article  CAS  Google Scholar 

  70. Tsuzuki S, Lüthi HP (2001) J Chem Phys 114:3949–3957

    Article  CAS  Google Scholar 

  71. Milet A, Korona T, Moszynski R, Kochanski E (1999) J Chem Phys 111:7727–7735

    Article  CAS  Google Scholar 

  72. Elstner M, Hobza P, Frauenheim T, Suhai S, Kaxiras E (2001) J Chem Phys 114:5149–5155

    Article  CAS  Google Scholar 

  73. Cybulski SM, Bledson TM, Toczyłowski RR (2002) J Chem Phys 116:11039–11040

    Article  CAS  Google Scholar 

  74. Mourik TV, Gdanitz RJ (2002) J Chem Phys 116:9620–9623

    Article  CAS  Google Scholar 

  75. Cybulski SM, Seversen CE (2005) J Chem Phys 122:014117

    Article  CAS  Google Scholar 

  76. Grimme S (2006) J Comput Chem 27:1787–1799

    Article  CAS  Google Scholar 

  77. Jurečka P, Černý J, Hobza P, Salahub DR (2007) J Comput Chem 28:555–569

    Article  CAS  Google Scholar 

  78. Wu Q, Yang W (2002) J Chem Phys 116:515–524

    Article  CAS  Google Scholar 

  79. Antony J, Grimme S (2006) Phys Chem Chem Phys 8:5287–5293

    Article  CAS  Google Scholar 

  80. Zhao Y, Truhlar DG (2004) J Phys Chem A 108:6908–6918

    Article  CAS  Google Scholar 

  81. Zhao Y, Schultz NE, Truhlar DG (2006) J Chem Theory Comput 2:364–382

    Article  CAS  Google Scholar 

  82. Zhao Y, Truhlar DG (2006) J Chem Phys 125:194101

    Article  CAS  Google Scholar 

  83. Zhao Y, Truhlar DG (2005) Phys Chem Chem Phys 7:2701–2705

    Article  CAS  Google Scholar 

  84. Dkhissi A, Blossey R (2007) Chem Phys Lett 439:35–39

    Article  CAS  Google Scholar 

  85. Stepanian SG, Karachevtsev MV, Glamazda AYu, Karachevtsev VA, Adamowicz L (2008) Chem Phys Lett 459:153–158

    Article  CAS  Google Scholar 

  86. Gu J, Wang J, Leszczynski J, Xie Y, Schaefer HF (2008) Chem Phys Lett 459:164–166

    Article  CAS  Google Scholar 

  87. Wong BM (2009) J Comput Chem 30:51–56

    Article  CAS  Google Scholar 

  88. Spartan ’08 for Windows (2006) Wavefunction, Irvine, CA

  89. Halgren TA (1996) J Comp Chem 17:490–519

    Article  CAS  Google Scholar 

  90. Thompson MA (2004) ArgusLab 4.0.1. Planaria Software LLC, Seattle, WA

  91. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  92. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  93. Hehre WJ, Radom L, PvR S (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  94. Chermette H (1999) J Comput Chem 20:129–154

    Article  CAS  Google Scholar 

  95. Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793–1874

    Article  CAS  Google Scholar 

  96. Sarkar U, Roy DR, Chattaraj PK, Parthasarathi R, Padmanabhan J, Subramanian V (2005) J Chem Sci 117:599–612

    Article  CAS  Google Scholar 

  97. Chen JC, Qian L, Wu WJ, Chen LM, Zheng KC (2005) THEOCHEM 756:167–172

    Article  CAS  Google Scholar 

  98. Chen JC, Shen Y, Liao S, Chen LM, Zheng KC (2007) Int J Quant Chem 107:1468–1478

    Article  CAS  Google Scholar 

  99. Berman HM, Young PR (1981) Annu Rev Biophys Bioeng 10:87–114

    Article  CAS  Google Scholar 

  100. Xiao S, Lin W, Wang C, Yang M (2001) Bioorg Med Chem Lett 11:437–441

    Article  CAS  Google Scholar 

  101. El-Gogary TM, Koehler G (2009) THEOCHEM 895:57–64

    Article  CAS  Google Scholar 

  102. Müller W, Crothers DM (1975) Eur J Biochem 54:267–277

    Article  Google Scholar 

  103. Hunter CA, Lawson KR, Perkins J, Urch CJ (2001) J Chem Soc Perkin Trans 2:651–669

    Google Scholar 

  104. Boger DL, Invergo DJ, Coleman RS, Zarrinmayeh H, Kitos PA, Collins-Thompson S, Leong T, McLaughlin LW (1990) Chem Biol Interact 73:29–52

    Article  CAS  Google Scholar 

  105. Haq I (2002) Arch Biochem Biophys 403:1–15

    Article  CAS  Google Scholar 

  106. Baginski M, Fogolari F, Briggs JM (1997) J Mol Biol 274:253–267

    Article  CAS  Google Scholar 

  107. Rehn C, Pindur U (1996) Monats Chem 127:645–658

    Article  CAS  Google Scholar 

  108. Nakatani K, Matsuno T, Adachi K, Hagihara S, Saito I (2001) J Am Chem Soc 123:5695–5702

    Article  CAS  Google Scholar 

  109. Mei WJ, Liu J, Zheng KC, Lin LJ, Chao H, Li AX, Yun FC, Ji LN (2003) Dalton Trans 2003:1352–1359

    Article  CAS  Google Scholar 

  110. Nowak K, Wysocki S (2004) THEOCHEM 682:191–199

    Article  CAS  Google Scholar 

  111. Fukui K, Yonezawa T, Shingu H (1952) J Chem Phys 20:722–725

    Article  CAS  Google Scholar 

  112. Pullman B (1991) Anticancer Drug Design 6:95–105

    CAS  Google Scholar 

  113. Trotta E, D’Ambrosio E, Ravagnan G, Paci M (1995) Nucleic Acids Res 23:1333–1340

    Article  CAS  Google Scholar 

  114. Rehn C, Pundur U (1996) Monats Chem 127:631–644

    Article  CAS  Google Scholar 

  115. Lisgarten JN, Coll M, Portugal J, Wright CW, Aymami J (2002) Nature Struct Biol 9:57–60

    Article  CAS  Google Scholar 

  116. Ghose AK, Pritchett A, Crippen GM (1988) J Comput Chem 9:80–90

    Article  CAS  Google Scholar 

  117. Cramer CJ, Truhlar DG (1992) J Comput Chem 13:1089–1097

    Article  CAS  Google Scholar 

  118. Chambers CC, Hawkins GD, Cramer CJ, Truhlar DG (1996) J Phys Chem 100:16385–16398

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William N. Setzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Byler, K.G., Wang, C. & Setzer, W.N. Quinoline alkaloids as intercalative topoisomerase inhibitors. J Mol Model 15, 1417–1426 (2009). https://doi.org/10.1007/s00894-009-0501-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-009-0501-6

Keywords

Navigation