Skip to main content
Log in

Molecular dynamic simulations of the metallo-beta-lactamase from Bacteroides fragilis in the presence and absence of a tight-binding inhibitor

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The beta-lactam-based antibiotics are among the most prescribed and effective antibacterial agents. Widespread use of these antibiotics, however, has created tremendous pressure for the emergence of resistance mechanisms in bacteria. The most common cause of antibiotic resistance is bacterial production of actamases that efficiently degrade antibiotics. The metallo-beta-lactamases are of particular clinical concern due to their transference between bacterial strains. We used molecular dynamics (MD) simulations to further study the conformational changes that occur due to binding of an inhibitor to the dicanzinc metallo-beta-lactamase from Bacteroides fragilis. Our studies confirm previous findings that the major flap is a major source of plasticity within the active site, therefore its dynamic response should be considered in drug development. However, our results also suggest the need for care in using MD simulations in evaluating loop mobility, both due to relaxation times and to the need to accurately model the zinc active site. Our study also reveals two new robust responses to ligand binding. First, there are specific localized changes in the zinc active site—a local loop flip—due to ligand intercalation that may be critical to the function of this enzyme. Second, inhibitor binding perturbs the dynamics throughout the protein, without otherwise perturbing the enzyme structure. These dynamic perturbations radiate outward from the active site and their existence suggests that long-range communication and dynamics may be important in the activity of this enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bush K (1998) Clin Infect Dis 27[Suppl 1]:S48–S53

  2. Bush K, Mobashery S (1998) In: Rosen PB, Mobashery S (eds) Resolving the antibiotic paradox: progress in understanding drug resistance and development of new antibiotics. Kluwer/Plenum, New York, pp 71–98

  3. Knowles JR (1985) Acc Chem Res 18:97–104. doi:10.1021/ar00112a001

    Article  CAS  Google Scholar 

  4. Knowles JR (1980) In: Brodbeck U (ed) Enzyme inhibitors. Verlag Chemie, Weinheim, pp 163–167

  5. Neu HC (1992) Science 257(5073):1064–1073. doi:10.1126/science.257.5073.1064

    Article  CAS  Google Scholar 

  6. Ash C (1996) Trends Microbiol 4(10):371–372. doi:10.1016/0966-842X(96)30028-0

    Article  CAS  Google Scholar 

  7. Wilkins AS (1996) Bioessays 18(10):847–848. doi:10.1002/bies.950181012

    Article  CAS  Google Scholar 

  8. Levy SB (1998) Sci Am 3:46–53

    Google Scholar 

  9. Barbosa TM, Levy SB (2000) Drug Resist Updat 3:303–311. doi:10.1054/drup.2000.0167

    Article  Google Scholar 

  10. Ambler RP (1980) Philos Trans R Soc Lond B Biol Sci 289:321–331. doi:10.1098/rstb.1980.0049

    Article  CAS  Google Scholar 

  11. Jaurin B, Grundstrom T (1981) Proc Natl Acad Sci USA 78:4897–4901. doi:10.1073/pnas.78.8.4897

    Article  CAS  Google Scholar 

  12. Mederios A (1984) Br Med Bull 40:18–27

    Google Scholar 

  13. Bush K (1989) Antimicrob Agents Chemother 33(3):259–263

    CAS  Google Scholar 

  14. Carfi A, Duee E, Galleni M, Frère JM, Dideberg O (1998) Acta Crystallogr D Biol Crystallogr 54(Pt 3):313–323. doi:10.1107/S0907444997010627

    Article  CAS  Google Scholar 

  15. Toney JH, Moloughney JG (2004) Curr Opin Investig Drugs 5(8):823–826

    CAS  Google Scholar 

  16. Garau G, Garcia-Saez I, Bebrone C, Anne C, Mercuri P, Galleni M et al (2004) Antimicrob Agents Chemother 48(7):2347–2349. doi:10.1128/AAC.48.7.2347-2349.2004

    Article  CAS  Google Scholar 

  17. Ito H, Arakawa Y, Ohsuka S, Wacharotayankun R, Kato N, Ohta M (1995) Antimicrob Agents Chemother 39(4):824–829

    CAS  Google Scholar 

  18. Levy SB, Miller A (1989) Gene transfer in the enviroment. McGraw Hill, New York

    Google Scholar 

  19. Senda K, Arakawa Y, Ichiyama S, Nakashima K, Ito H, Ohsuka S, Shimokata K, Kato N, Ohta MJ (1996) Clin Microbiol 34:2909–2913

    CAS  Google Scholar 

  20. Levy SB, Marshall B (2004) Nat Med 10(12):S122–S129. doi:10.1038/nm1145

    Article  CAS  Google Scholar 

  21. Bush K, Miller GH (1998) Curr Opin Microbiol 1:509–515. doi:10.1016/S1369-5274(98)80082-9

    Article  CAS  Google Scholar 

  22. Tsakris A, Ikonomidis A, Spanakis N, Poulou A, Pournaras S, Antimicrob J (2007) Chemother 59(4):739–741

    CAS  Google Scholar 

  23. Mendes RE, Toleman MA, Ribeiro J, Sader HS, Jones RN, Walsh TR (2004) Antimicrob Agents Chemother 48(12):4693–4702. doi:10.1128/AAC.48.12.4693-4702.2004

    Article  CAS  Google Scholar 

  24. Riccio ML, Pallechi L, Fontana R, Rossolini GM (2001) Antimicrob Agents Chemother 45(4):1249–1253. doi:10.1128/AAC.45.4.1249-1253.2001

    Article  CAS  Google Scholar 

  25. Gales AC, Menezes LC, Silbert S, Sader HS, Antimicrob J (2003) Chemother 52(4):699–702

    CAS  Google Scholar 

  26. Giakkoupi P, Petrikkos G, Tzouvelekis LS, Tsonas S, Legakis NJ, Vatopoulos AC (2003) J Clin Microbiol 41(2):822–825. doi:10.1128/JCM.41.2.822-825.2003

    Article  CAS  Google Scholar 

  27. Giakkoupi P, Xanthaki A, Kanelopoulou M, Vlahaki A, Miriagou V, Kontou S et al (2003) Clin Microbiol 41(8):3893–3896. doi:10.1128/JCM.41.8.3893-3896.2003

    Article  CAS  Google Scholar 

  28. Lee K, Lee WG, Uh Y, Ha GY, Cho J, Chong Y (2003) Emerg Infect Dis 9(7):868–871

    CAS  Google Scholar 

  29. Concha NO, Rasmussen BA, Bush K, Herzberg O (1996) Structure 4:823–836. doi:10.1016/S0969-2126(96)00089-5

    Article  CAS  Google Scholar 

  30. Walsh TR (2005) Clin Microbiol Infect 11(Suppl 6):2–9. doi:10.1111/j.1469-0691.2005.01264.x

    Article  CAS  Google Scholar 

  31. Walsh TR, Neville WA, Haran MH, Tolson D, Payne DJ, Bateson JH et al (1998) Antimicrob Agents Chemother 42(2):436–439

    CAS  Google Scholar 

  32. Ullah JH, Walsh TR, Taylor IA, Emery DC, Verma CS, Gamblin SJ et al (1998) J Mol Biol 284:125–136. doi:10.1006/jmbi.1998.2148

    Article  CAS  Google Scholar 

  33. Crowder MW, Wang Z, Franklin SL, Zovinka EP, Benkovic SJ (1996) Biochemistry 35:12126–12132. doi:10.1021/bi960976h

    Article  CAS  Google Scholar 

  34. Crowder MW, Walsh TR, Banovic L, Pettit M, Spencer J (1998) Antimicrob Agents Chemother 42(4):921–926

    CAS  Google Scholar 

  35. Wang Z, Benkovic SJ (1998) J Biol Chem 273(35):22402–22408. doi:10.1074/jbc.273.35.22402

    Article  CAS  Google Scholar 

  36. Valladares MH, Felici A, Weber G, Adolph HW, Zeppezauer M, Rossolini GM et al (1997) Biochemistry 36:11534–11541. doi:10.1021/bi971056h

    Article  Google Scholar 

  37. Crawford PA, Sharma N, Chandrasekar S, Sigdel T, Walsh TR, Spencer J et al (2004) Protein Expr Purif 36:272–279. doi:10.1016/j.pep.2004.04.017

    Article  CAS  Google Scholar 

  38. Walsh TR, Hall L, Assinder SJ, Nichols WW, Cartwright SJ, MacGowan AP et al (1994) Biochim Biophys Acta 1218:199–201

    CAS  Google Scholar 

  39. Walsh TR, Payne DJ, Neville T, Tolson D, MacGowan AP, Bennett PM (1997) Antimicrob Agents Chemother 41:1460–1462

    CAS  Google Scholar 

  40. Muder RR, Yu VL, Dummer JS, Vinson C, Lumish RM (1987) Arch Intern Med 147:1672–1674. doi:10.1001/archinte.147.9.1672

    Article  CAS  Google Scholar 

  41. Khardori N, Elting L, Wong E, Schable B, Bodey GP (1990) Rev Infect Dis 12(6):997–1003

    CAS  Google Scholar 

  42. Villarino ME, Stevens LE, Schable B, Mayers G, Miller JM, Burke JP et al (1992) Infect Control Hosp Epidemiol 13(4):201–206

    Article  CAS  Google Scholar 

  43. Mett H, Rosta S, Schacher B, Frei R (1988) Rev Infect Dis 10(4):765–769

    CAS  Google Scholar 

  44. Miller LA, Ratnam K, Payne DJ (2001) Curr Opin Pharmacol 1(5):451–458. doi:10.1016/S1471-4892(01)00079-0

    Article  CAS  Google Scholar 

  45. Walsh TR, Toleman MA, Poirel L, Nordmann P (2005) Clin Microbiol Rev 18(2):306–325. doi:10.1128/CMR.18.2.306-325.2005

    Article  CAS  Google Scholar 

  46. Marra AR, Pereira CA, Gales AC, Menezes LC, Cal RG, de Souza JM et al (2006) Antimicrob Agents Chemother 50(1):388–390. doi:10.1128/AAC.50.1.388-390.2006

    Article  CAS  Google Scholar 

  47. Toleman MA, Rolston K, Jones RN, Walsh TR (2004) Antimicrob Agents Chemother 48(1):329–332. doi:10.1128/AAC.48.1.329-332.2004

    Article  CAS  Google Scholar 

  48. Hanson ND, Hossain A, Buck L, Moland ES, Thomson KS (2006) Antimicrob Agents Chemother 50(6):2272–2273. doi:10.1128/AAC.01440-05

    Article  CAS  Google Scholar 

  49. Lolans K, Queenan AM, Bush K, Sahud A, Quinn JP (2005) Antimicrob Agents Chemother 49(8):3538–3540. doi:10.1128/AAC.49.8.3538-3540.2005

    Article  CAS  Google Scholar 

  50. Daiyasu H, Osaka K, Ishino Y, Toh H (2001) FEBS Lett 503(1):1–6. doi:10.1016/S0014-5793(01)02686-2

    Article  CAS  Google Scholar 

  51. Scrofani SDB, Chung J, Huntley JJA, Benkovic SJ, Wright PE, Dyson HJ (1999) Biochemistry 38:14507–14514. doi:10.1021/bi990986t

    Article  CAS  Google Scholar 

  52. Huntley JJA, Scrofani SDB, Osborne MJ, Wright PE, Dyson HJ (2000) Biochemistry 39:13356–13364. doi:10.1021/bi001210r

    Article  CAS  Google Scholar 

  53. Salsbury FR, Crowley MF, Brooks CL (2001) Protein Struct Funct Genet 44(4):448–459. doi:10.1002/prot.1110

    Article  CAS  Google Scholar 

  54. Huntley JJA, Fast W, Benkovic SJ, Wright PE, Dyson HJ (2003) Protein Sci 12:1368–1375. doi:10.1110/ps.0305303

    Article  CAS  Google Scholar 

  55. Stote RH, Karplus M (1995) Proteins 23(1):12–31. doi:10.1002/prot.340230104

    Article  CAS  Google Scholar 

  56. Gresh N, Sponer J (1999) J Phys Chem B 103(51):11415–11427. doi:10.1021/jp9921351

    Article  CAS  Google Scholar 

  57. Pang YP, Xu K, Yazal JE, Prendergas FG (2000) Protein Sci 9(10):1857–1865

    CAS  Google Scholar 

  58. Pang YP (2001) Proteins 45(3):183–189. doi:10.1002/prot.1138

    Article  CAS  Google Scholar 

  59. Oelschlaeger P, Schmid RD, Pleiss J (2003) Protein Eng 16(5):341–350. doi:10.1093/protein/gzg049

    Article  CAS  Google Scholar 

  60. Oelschlaeger P, Schmid RD, Pleiss J (2003) Biochemistry 42(30):8945–8956. doi:10.1021/bi0300332

    Article  CAS  Google Scholar 

  61. Carfi A, Duee E, Paul-Soto R, Galleni M, Frere JM, Dideberg O (1998) Acta Crystallogr D Biol Crystallogr 54:45–57. doi:10.1107/S090744499700927X

    Article  CAS  Google Scholar 

  62. Galleni M, Lamotte-Brasseur J, Rossolini GM, Spencer J, Dideberg O, Frere JM (2001) Antimicrob Agents Chemother 45(3):660–663. doi:10.1128/AAC.45.3.660-663.2001

    Article  CAS  Google Scholar 

  63. Wang Z, Fast W, Benkovic SJ (1998) J Am Chem Soc 120(41):10788–10789. doi:10.1021/ja982621m

    Article  CAS  Google Scholar 

  64. Case DA, Cheatham TE III, Darden T, Gohlke H, Luo R, Merz KM et al (2005) J Comput Chem 26(16):1668–1688. doi:10.1002/jcc.20290

    Article  CAS  Google Scholar 

  65. Agarwal PK, Billeter SR, Rajagopalan PT, Benkovic SJ, Hammes-Schiffer S (2002) Proc Natl Acad Sci USA 99:2794–2799. doi:10.1073/pnas.052005999

    Article  CAS  Google Scholar 

  66. Pineda JR, Schwartz SD (2006) Philos Trans R Soc Lond B Biol Sci 361:1433–1438. doi:10.1098/rstb.2006.1877

    Article  CAS  Google Scholar 

  67. Campos-Bermudez VA, Leite NR, Krog R, Costa-Filho AJ, Soncini FC, Oliva G et al (2007) Biochemistry 46(39):11069–11079. doi:10.1021/bi7007245

    Article  CAS  Google Scholar 

  68. Tomatis PE, Rasia RM, Sergobia L, Vila AJ (2005) Proc Natl Acad Sci USA 102(29):13761–13766. doi:10.1073/pnas.0503495102

    Article  CAS  Google Scholar 

  69. Oelschlaeger P, Schmid P, Pleiss J (2003) Biochemistry 42(30):8945–8956

    Article  CAS  Google Scholar 

  70. Oelschlaeger P, Mayo S, Pleiss J (2005) Protein Sci 14(3):765–774

    Article  CAS  Google Scholar 

  71. Irwin JJ, Raushel FM, Shoichet BK (2005) Biochemistry 44(37):12316–12328. doi:10.1021/bi050801k

    Article  CAS  Google Scholar 

  72. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W et al (2003) J Comput Chem 24:1999–2012. doi:10.1002/jcc.10349

    Article  CAS  Google Scholar 

  73. Ertl P, Muhlbacher J, Rohde B, Selzer P (2003) SAR QSAR Environ Res 14(5–6):321–328 http://www.molinspiration.com/jme/ doi:10.1080/10629360310001673917

    Article  CAS  Google Scholar 

  74. http://cactus.nci.nih.gov/services/translate/.

  75. Concha NO, Janson CA, Rowling P, Pearson S, Cheever CA, Clarke BP et al (2000) Biochemistry 39:4288–4298. doi:10.1021/bi992569m

    Article  CAS  Google Scholar 

  76. Kurosaki H, Yamaguchi Y, Higashi T, Soga K, Matsueda S, Yumoto H et al (2005) Angew Chem Int Ed Engl 44:3861–3864. doi:10.1002/anie.200500835

    Article  CAS  Google Scholar 

  77. Wang J, Wolf RM, Caldwell JW, Kollamn PA, Case DA (2004) J Comput Chem 25(9):1157–1174. doi:10.1002/jcc.20035

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Some of these calculations were performed on the DEAC cluster at Wake Forest University (http://www.deac.wfu.edu). We thank the WFU Information Systems for their support of the cluster, WFU’s Department of Physics and Associate Provost for Research for their funding of the cluster, and IBM for their generous support through a SUR grant to provide disk space. J.H. acknowledges partial support of this publication by NIH Grant Number RR-16480 from the NM-INBRE Program of the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH). We thank an anonymous reviewer for suggesting the hydrogen bond analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Freddie R. Salsbury Jr..

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Structural comparison of Apo, pose 2 and the structure with the longest zinc–zinc distance. The centroids of the most populated clusters in the apo (gray), and pose 2 (red) simulations are depicted along with the structure with the largest zinc–zinc distance (orange), which is found in pose 2. The protein is depicted in the new cartoon representation, and the zinc atoms in vdW representation (GIF 819 KB).

(TIF 721 KB)

Figure S2

Detailed structural comparison of Apo, pose 2 and the structure with the longest zinc–zinc distance. As Fig. S1, but zoomed in with all atoms within 5 Å of the zinc atoms depicted in a bonded representation to highlight the loop flip and the slight structural changes at the zinc site (GIF 109 MB).

(TIF 115MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salsbury, F.R., Crowder, M.W., Kingsmore, S.F. et al. Molecular dynamic simulations of the metallo-beta-lactamase from Bacteroides fragilis in the presence and absence of a tight-binding inhibitor. J Mol Model 15, 133–145 (2009). https://doi.org/10.1007/s00894-008-0410-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-008-0410-0

Keywords

Navigation