Skip to main content
Log in

Homology modeling and examination of the effect of the D92E mutation on the H5N1 nonstructural protein NS1 effector domain

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Virulent H5N1 strains of influenza virus often harbor a D92E point mutation in the nonstructural protein NS1. This crucial mutation has been correlated with increased virulence and/or cytokine resistance, but the structural implications of such a change are still unclear. Furthermore, NS1 protein could also be a potential target for the development of novel antiviral agents against H5N1 strains. Therefore, a reasonable 3D model of H5N1 NS1 is important for the understanding of the molecular basis of increased virulence and the design of novel antiviral agents. Based on the crystal structure of a non-H5N1 NS1 protein, a model of H5N1 NS1 was developed by homology modeling, molecular mechanics and molecular dynamics simulations. It was found that the D92E mutation could result in weakened interactions of the carboxylate side chain with other phosphorylated residues, thereby activating phosphorylation of NS1.

Superposition of snapshots picked from the two molecular dynamic (MD) trajectories: a H5N1 NS1 homology model and b non-H5N1 NS1 crystal structure after 0 (green ribbon), 5 (blue ribbon) and 10 ns (pink ribbon) MD simulation

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Claas EC, Osterhaus AD, van Beek R, De Jong JC, Rimmelzwaan GF, Senne DA, Krauss S, Shortridge KF, Webster RG (1998) Lancet 351:472–477

    Article  CAS  Google Scholar 

  2. Webby RJ, Webster RG (2003) Science 302:1519–1522

    Article  CAS  Google Scholar 

  3. Gostin LO (2006) JAMA 295:554–556

    Article  CAS  Google Scholar 

  4. Longini IM Jr, Nizam A, Xu S, Ungchusak K, Hanshaoworakul W, Cummings DA, Halloran ME (2005) Science 309:1083–1087

    Article  CAS  Google Scholar 

  5. Krug RM, Yuan W, Noah DL, Latham AG (2003) Virology 309:181–189

    Article  CAS  Google Scholar 

  6. Fortes P, Lamond AI, Ortin J (1995) J Gen Virol 76:1001–1007

    CAS  Google Scholar 

  7. Chen Z, Li Y, Krug RM (1999) EMBO J 18:2273–2283

    Article  CAS  Google Scholar 

  8. Nemeroff ME, Barabino SM, Li Y, Keller W, Krug RM (1998) Mol Cell 1:991–1000

    Article  CAS  Google Scholar 

  9. Talon J, Horvath CM, Polley R, Basler CF, Muster T, Palese P, Garcia-Sastre A (2000) J Virol 74:7989–7996

    Article  CAS  Google Scholar 

  10. Wang X, Li M, Zheng H, Muster T, Palese P, Beg AA, Garcia-Sastre A (2000) J Virol 74:11566–11573

    Article  CAS  Google Scholar 

  11. Zurcher T, Marion RM, Ortin J (2000) J Virol 74:8781–8784

    Article  CAS  Google Scholar 

  12. Obenauer JC, Denson J, Mehta PK, Su X, Mukatira S, Finkelstein DB, Xu X, Wang J, Ma J, Fan Y, Rakestraw KM, Webster RG, Hoffmann E, Krauss S, Zheng J, Zhang Z, Naeve CW (2006) Science 311:1576–1580

    Article  CAS  Google Scholar 

  13. Twu KY, Noah DL, Rao P, Kuo RL, Krug RM (2006) J Virol 80:3957–3965

    Article  CAS  Google Scholar 

  14. De Clercq E (2006) Nat Rev Drug Discov 5:1015–1025

    Article  CAS  Google Scholar 

  15. Seo SH, Hoffmann E, Webster RG (2002) Nat Med 8:950–954

    Article  CAS  Google Scholar 

  16. Seo SH, Hoffmann E, Webster RG (2004) Virus Res 103:107–113

    Article  CAS  Google Scholar 

  17. Lipatov AS, Andreansky S, Webby RJ, Hulse DJ, Rehg JE, Krauss S, Perez DR, Doherty PC, Webster RG, Sangster MY (2005) J Gen Virol 86:1121–1130

    Article  CAS  Google Scholar 

  18. Li M, Wang B (2006) Biochem Biophys Res Commun 347:662–668

    Article  CAS  Google Scholar 

  19. Yamada S, Suzuki Y, Suzuki T, Le MQ, Nidom CA, Sakai-Tagawa Y, Muramoto Y, Ito M, Kiso M, Horimoto T, Shinya K, Sawada T, Kiso M, Usui T, Murata T, Lin Y, Hay A, Haire LF, Stevens DJ, Russell RJ, Gamblin SJ, Skehel JJ, Kawaoka Y (2006) Nature 444:378–382

    Article  CAS  Google Scholar 

  20. Yang ZY, Wei CJ, Kong WP, Wu L, Xu L, Smith DF, Nabel GJ (2007) Science 317:825–828

    Article  CAS  Google Scholar 

  21. Li M-Y, Lu J-F, Xia L (2005) Acta Chim Sin 63:1875–1883

    CAS  Google Scholar 

  22. Du LP, Li MY, Tsai KC, You QD, Xia L (2005) Biochem Biophys Res Commun 332:677–687

    Article  CAS  Google Scholar 

  23. Ginalski K (2006) Curr Opin Struct Biol 16:172–177

    Article  CAS  Google Scholar 

  24. Du L, Li M, You Q, Xia L (2007) Biochem Biophys Res Commun 355:889–894

    Article  CAS  Google Scholar 

  25. Tramontano A (1998) Methods 14:293–300

    Article  CAS  Google Scholar 

  26. Bornholdt ZA, Venkataram Prasad BV (2006) Nat Struc Mol Biol 13:559–560

    Article  CAS  Google Scholar 

  27. Boeckmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A, Gasteiger E, Martin MJ, Michoud K, O’Donovan C, Phan I, Pilbout S, Schneider M (2003) Nucleic Acids Res 31:365–370

    Article  CAS  Google Scholar 

  28. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) Nucleic Acids Res 25:4876–4882

    Article  CAS  Google Scholar 

  29. Fiser A, Sali A (2003) Methods Enzymol 374:461–491

    Article  CAS  Google Scholar 

  30. Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM (1996) J Biomol NMR 8:477–486

    Article  CAS  Google Scholar 

  31. Colovos C, Yeates TO (1993) Protein Sci 2:1511–1519

    Article  CAS  Google Scholar 

  32. Eisenberg D, Luthy R, Bowie JU (1997) Methods Enzymol 277:396–404

    CAS  Google Scholar 

  33. Vriend G, Sander C (1993) J Appl Crystallogr 26:47–60

    Article  CAS  Google Scholar 

  34. Tomii K, Hirokawa T, Motono C (2005) Proteins 61(Suppl 7):114–121

    Article  CAS  Google Scholar 

  35. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  36. Case DA, Cheatham TE III, Darden T, Gohlke H, Luo R, Merz Jr KM, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) J Comput Chem 26:1668–1688

    Article  CAS  Google Scholar 

  37. DeLano WL (2006) The PyMOL Molecular Graphics System. DeLano Scientific, San Carlos, CA, http://www.pymol.org

  38. McDonald IK, Thornton JM (1994) J Mol Biol 238:777–793

    Article  CAS  Google Scholar 

  39. Wallace AC, Laskowski RA, Thornton JM (1995) Protein Eng 8:127–134

    Article  CAS  Google Scholar 

  40. Corbau R, Salom N, Rommelaere J, Nuesch JP (1999) Virology 259:402–415

    Article  CAS  Google Scholar 

  41. Nuesch JP, Lachmann S, Corbau R, Rommelaere J (2003) J Virol 77:433–442

    Article  CAS  Google Scholar 

  42. Blom N, Gammeltoft S, Brunak S (1999) J Mol Biol 294:1351–1362

    Article  CAS  Google Scholar 

  43. Li S, Min JY, Krug RM, Sen GC (2006) Virology 349:13–21

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Georgia Cancer Coalition, Georgia Research Alliance, and the National Institutes of Health (CA123329, CA113917) is gratefully acknowledged. We also thank Mr. Victor Bolet for his technical support on computation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binghe Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M., Wang, B. Homology modeling and examination of the effect of the D92E mutation on the H5N1 nonstructural protein NS1 effector domain. J Mol Model 13, 1237–1244 (2007). https://doi.org/10.1007/s00894-007-0245-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-007-0245-0

Keywords

Navigation