Skip to main content
Log in

Ab initio and DFT study of the inner mechanism and dynamic stereochemistry of electrophilic addition reaction of bromine to bisbenzotetracyclo[6.2.2.23,6.02,7]tetradeca-4,9,11,13-tetraene

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The inner mechanism and dynamic stereochemistry of electrophilic addition of bromine to bisbenzotetracyclo[6.2.2.23,6.02,7]tetradeca-4,9,11,13-tetraene(BBTT) molecule have been investigated by the methods of quantum chemistry. The structure of the BBTT molecule has been studied by ab initio and DFT/B3LYP methods using the 6-31G(d) and 6-311G(d) basis sets. The double bonds of BBTT molecule are endo-pyramidalized. The structure and stability of the cationic intermediates and products of the addition reaction have been investigated by HF/6-311G(d), HF/6-311G(d,p), B3LYP/6-311G(d) and B3LYP/6-311++G(2d,p)//B3LYP/6-311G(d) methods. The bridged bromonium cation isomerized into the more stable nonclassical delocalized N- and U-type cations and the difference between the stability of these cations is small. For the determination of the direction of addition reaction and the stereochemistry of the products, the stability of nonclassical delocalized N- and U-type ions and the structure of their cationic centres play a vital role. Since the cationic centre of the N-type ion is in interaction with the benzene ring from the exo face, the nucleofilic attackof the bromide anion to this centre occurs from the endo face and the exo,endo-isomer of the N-type product is obtained. The attack of bromide anion, towards the cationic centre of U-type ion from the endo face is sterically hindered by the hydrogen atom therefore the attack occurs from the exo face, which interacts with the benzene ring and the more stable exo,exo-isomer of U-type product is formed. Although, the U-type cation was 2.232 kcal mol−1 more stable than the N-type cation, the U-type product was 0.587 kcal mol−1 less stable than the N-type product.

The energy diagram of BBTT-Br2 system (kcal mol−1) [B3LYP/6-311++G(2d,p)//B3LYP/6-311G(d)]

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1

Similar content being viewed by others

References

  1. Goldstein MJ, Hoffmann R (1971) J Am Chem Soc 93:6193–6204

    Article  CAS  Google Scholar 

  2. Gleiter R, Schafer W (1990) Acc Chem Res 23:369–375

    Article  CAS  Google Scholar 

  3. Hoffmann R, Imamura A, Hehre WJ (1968) J Am Chem Soc 90:1499–1509

    Article  CAS  Google Scholar 

  4. Hoffmann R (1971) Acc Chem Res 4:1–9

    Article  CAS  Google Scholar 

  5. Grimme W, Wortmann J, Frowein D, Lex J, Chen G, Gleiter R (1998) J Chem Soc Perkin Trans 2:1893–1900

    Google Scholar 

  6. Osawa E, Aigami K, Inamoto Y (1978) Tetrahedron 34:509–515

    Article  CAS  Google Scholar 

  7. Lin CT, Wang NJ, Yeh YL, Chou TC (1995) Tetrahedron 51:2907–2928

    Article  CAS  Google Scholar 

  8. Lin CT, Wang NJ, Tseng HZ, Chou TC (1997) J Org Chem 62:4857–4861

    Article  CAS  Google Scholar 

  9. Lin CT, Hsu HC, Chou TC (1999) J Org Chem 64:7260–7264

    Article  CAS  Google Scholar 

  10. Soloway SB, Damiana AM, Sim JW, Bluestone H, Lidov RE (1960) J Am Chem Soc 82:5377–5385

    Article  CAS  Google Scholar 

  11. Franz HJ, Hobold W, Hohn R, Muller-Hagen G, Muller R, Pritzkow R, Schmidt H (1970) J Prakt Chem 320:622–634

    Article  Google Scholar 

  12. Haufe G, Kleinpeter E, Muhlstadt M, Graefe J (1978) Monatshefte f. Chem 109:575–585

    Article  CAS  Google Scholar 

  13. Matturro MG, Adams RD, Wiberg KB (1981) Chem Commun 17:878–879

    Google Scholar 

  14. Uemura S, Fukuzawa S, Toshimitsu A, Masaya O (1983) J Org Chem 48:270–273

    Article  CAS  Google Scholar 

  15. Wiberg KB, Adams RD, Okarma PJ, Matturro MG, Segmıller B (1984) J Am Chem Soc 6:2200–2206

    Article  Google Scholar 

  16. Kimura M, Morossawa S (1985) J Org Chem 50:1532–1534

    Article  CAS  Google Scholar 

  17. Shea KJ, Greeley AC, Nguyen S, Beauchamp PD, Aue DH, Witzeman JS (1986) J Am C Chem Soc 108:5901–5908

    Article  CAS  Google Scholar 

  18. Haufe G, Alvernhe G, Laurent A (1986) Tetrahedron Lett 4449–4452

  19. Murty BARC, Pinkos R, Spurr PR, Fessner WD, Lutz G, Fritz H, Hunkler D, ri Prinzbach H (1992) Chem Ber 125:1719–1739

    Article  CAS  Google Scholar 

  20. Pinkos R, Melder JP, Weber K, Hunkler D, Prinzbach H (1993) J Am Chem Soc 115:7173–7191

    Article  CAS  Google Scholar 

  21. Herges R, Neumann H (1995) Liebigs Ann 1283–1289

  22. Robinson RE, Myers DY (1999) Tetrahedron Lett 1099–1100

  23. Günbas DD, Algı F, Hökelek T, Watson WH, Balcı M (2005) Tetrahedron 61:11177–11183

    Article  Google Scholar 

  24. Inagaki S, Fujimoto H, Fukui K (1976) J Am Chem Soc 98:4054–4061

    Article  CAS  Google Scholar 

  25. Belluci G, Chiappe C, Bianchini R, Lenoir D, Herges RJ (1995) J Am Chem Soc 117:12001–12002

    Article  Google Scholar 

  26. Herges R (1995) Angew Chem Int Ed Engl 34:51–53

    Article  CAS  Google Scholar 

  27. Ruiz E, Dennis R, Salahub R, Vela A (1996) J Phys Chem 100:12265–12276

    Article  CAS  Google Scholar 

  28. Brown RS (1997) Acc Chem Res 30(3):131–137

    Article  CAS  Google Scholar 

  29. Bianchini R, Chiappe C, Lenoir D, Lemmen P, Herges R, Grunenberg J (1997) Angeew Chem Int Ed Eng 36:1284–1287

    Article  CAS  Google Scholar 

  30. Smith WB (1998) J Org Chem 63:2661–2664

    Article  CAS  Google Scholar 

  31. Bianchini R, Chiappe C, Moro LG, Lenoir D, Lemmen P, Goldberg N (1999) Chem Eur J 5:1570–1580

    Article  CAS  Google Scholar 

  32. Chiappe C, Rubertis AD, Lemmen P, Lenoir D (2000) J Org Chem 65:1273–1279

    Article  CAS  Google Scholar 

  33. Chiappe C, Rubertis AD, Detert H, Lenoir D, Wannere C, Schleyer RP (2002) Chem Eur J 8:967–978

    Article  CAS  Google Scholar 

  34. Rathere R, Lindeman SV, Zhu CJ, Mori T, Schleyer RP, Kochi JK (2002) J Org Chem 67:5106–5116

    Article  Google Scholar 

  35. Lenoir D, Chiappe C (2003) Chem Eur J 9:1037–1044

    Article  Google Scholar 

  36. Chiappe C, Detert H, Lenoir D, Pomelli CS, Ruasse MF (2003) J Am Chem Soc 125:2864–2865

    Article  CAS  Google Scholar 

  37. Herges R, Papafflippopoulos A, Hess K, Chiappe C, Lenoir D, Detert H (2005) Angew Chem Int Ed 44:1412–1416

    Article  CAS  Google Scholar 

  38. Chiappe C, Pomelli CS, Lenoir D, Wattenbach C (2006) J Mol Model 12:631–639

    Article  CAS  Google Scholar 

  39. Abbasoglu R (2004) J Mol Struct (Theochem) 686:1–5 and references therein

    Article  CAS  Google Scholar 

  40. Abbasoglu R, Yilmaz S, Gök Y (2005) Indian J Chem 44A:221–226

    CAS  Google Scholar 

  41. Abbasoglu R, Yilmaz S (2006) J Mol Model 12:290–296

    Article  CAS  Google Scholar 

  42. Abbasoglu R (2006) J Mol Model 12:991–995

    Article  CAS  Google Scholar 

  43. Abbasoglu R (2007) J Mol Model 13:425–430

    Article  CAS  Google Scholar 

  44. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  45. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  46. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257–2261

    Article  CAS  Google Scholar 

  47. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–654

    Article  CAS  Google Scholar 

  48. Borden WT (1989) Chem Rev 89:1095–1109

    Article  CAS  Google Scholar 

  49. Ermer O, Bell P, Mason SA (1989) Angew Chem Int Ed Engl 28:1239–1241

    Article  Google Scholar 

  50. Osawa E, Aigami K, Inamoto Y (1977) J Org Chem 42:2622–2626

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rza Abbasoglu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbasoglu, R. Ab initio and DFT study of the inner mechanism and dynamic stereochemistry of electrophilic addition reaction of bromine to bisbenzotetracyclo[6.2.2.23,6.02,7]tetradeca-4,9,11,13-tetraene. J Mol Model 13, 1215–1220 (2007). https://doi.org/10.1007/s00894-007-0236-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-007-0236-1

Keywords

Navigation