Skip to main content
Log in

An overview of halogen bonding

  • Original paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Halogen bonding (XB) is a type of noncovalent interaction between a halogen atom X in one molecule and a negative site in another. X can be chlorine, bromine or iodine. The strength of the interaction increases in the order Cl<Br<I. After a brief review of experimental evidence relating to halogen bonding, we present an explanation for its occurrence in terms of a region of positive electrostatic potential that is present on the outermost portions of some covalently-bonded halogen atoms. The existence and magnitude of this positive region, which we call the σ-hole, depends upon the relative electron-attracting powers of X and the remainder of its molecule, as well as the degree of sp hybridization of the s unshared electrons of X. The high electronegativity of fluorine and its tendency to undergo significant sp hybridization account for its failure to halogen bond. Some computed XB interaction energies are presented and discussed. Mention is also made of the importance of halogen bonding in biological systems and processes, and in crystal engineering.

The computed B3PW91/6-31G(d,p) electrostatic potential, in kcal mol−1, on the 0.001 electrons/bohr3 surface of NC–C≡C–Cl. The chlorine atom is at the right. The color ranges are: red, more positive than 15; yellow between 7 and 15; green, between 0 and 7; blue, between −10 and 0; purple, more positive than −10.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Guthrie F (1863) J Chem Soc 16:239–244

    Article  Google Scholar 

  2. Remsen I, Norris JF (1896) Am Chem J 18:90–96

    Google Scholar 

  3. Mulliken RS (1952) J Am Chem Soc 74:811–824

    Article  CAS  Google Scholar 

  4. Flurry RL Jr (1969) J Phys Chem 69:1927–1933

    Google Scholar 

  5. Flurry RL Jr (1969) J Phys Chem 73:2111–2117

    Article  CAS  Google Scholar 

  6. Bent HA (1968) Chem Rev 68:587–648

    Article  CAS  Google Scholar 

  7. Hassel O (1970) Science 170:497–502

    Article  CAS  Google Scholar 

  8. Dumas J-M, Peurichard H, Gomel MJ (1978) Chem Res (S) 54–57

  9. Dumas J-M, Geron C, Peurichard H, Gomel M (1976) Bull Soc Chim Fr 720–722

  10. Dumas J-M, Kern M, Janier-Dubry JL (1976) Bull Soc Chim Fr 1785–1787

  11. Murray-Rust P, Motherwell WDS (1979) J Am Chem Soc 101:4374–4376

    Article  CAS  Google Scholar 

  12. Murray-Rust P, Stallings WC, Monti CT, Preston RK, Glusker JP (1983) J Am Chem Soc 105:3206–3214

    Article  CAS  Google Scholar 

  13. Ramasubbu N, Parthasarathy R, Murray-Rust P (1986) J Am Chem Soc 108:4308–4314

    Article  CAS  Google Scholar 

  14. Bernard-Houplain M-C, Sandorfy C (1973) Can J Chem 51:1075–1083

    Article  CAS  Google Scholar 

  15. Bernard-Houplain M-C, Sandorfy C (1973) Can J Chem 3640–3647

  16. Di Paolo T, Sandorfy C (1974) Chem Phys Lett 26:466–469

    Article  Google Scholar 

  17. Di Paolo T, Sandorfy C (1974) Can J Chem 52:3612–3622

    Article  Google Scholar 

  18. Brinck T, Murray JS, Politzer P (1992) Int J Quantum Chem, Quantum Biol Symp 19:57–64

    Article  CAS  Google Scholar 

  19. Murray JS, Paulsen K, Politzer P (1994) Proc Indian Acad Sci, Chem Sci 106:267–275

    CAS  Google Scholar 

  20. Stewart RF (1972) J Chem Phys 57:1664–1668

    Article  CAS  Google Scholar 

  21. Politzer P, Truhlar DG (eds) (1981) Chemical applications of atomic and molecular electrostatic potentials. Plenum, New York

    Google Scholar 

  22. Politzer P, Laurence PR, Jayasuriya K (1985) Environ Health Perspect 61:191–202

    CAS  Google Scholar 

  23. Murray JS, Politzer P (1998) J Mol Struct, Theochem 425:107–114

    Article  CAS  Google Scholar 

  24. Politzer P, Murray JS (1999) Trends Chem Phys 7:157–165

    CAS  Google Scholar 

  25. Politzer P, Murray JS, Peralta-Inga Z (2001) Int J Quantum Chem 85:676–684

    Article  CAS  Google Scholar 

  26. Bader RFW, Carroll MT, Cheeseman JR, Chang C (1987) J Am Chem Soc 109:7968–7979

    Article  CAS  Google Scholar 

  27. Hagelin H, Brinck T, Berthelot M, Murray JS, Politzer P (1995) Can J Chem 73:483–488

    Article  CAS  Google Scholar 

  28. Weinstein H, Politzer P, Srebrenik S (1975) Theor Chim Acta 38:159–163

    Article  CAS  Google Scholar 

  29. Politzer P, Murray JS (2002) Theor Chem Acc 108:134–142

    CAS  Google Scholar 

  30. Scrocco E, Tomasi J (1973) Top Curr Chem 42:95–170

    CAS  Google Scholar 

  31. Politzer P, Daiker KC (1981) In: Deb BM (ed) The force concept in chemistry (Ch 6). Van Nostrand, New York

    Google Scholar 

  32. Politzer P, Murray JS (1991) In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry Ch 7 Vol 2. VCH, New York

    Google Scholar 

  33. Politzer P, Harris RR (1970) J Am Chem Soc 92:6451–6454 (and references cited)

    Article  CAS  Google Scholar 

  34. Auffinger P, Hays FA, Westhof E, Shing Ho P (2004) Proc Nat Acad Sci 101:16789–16794

    Article  CAS  Google Scholar 

  35. Clark T, Hennemann M, Murray JS, Politzer P (2006) J Mol Model DOI 10.1007/s00894-006-0130-2

  36. Kutzelnigg W (1984) Angew Chem 96:262–269

    CAS  Google Scholar 

  37. Kutzelnigg W (1984) Angew Chem, Int Ed Engl 23:272–275

    Article  Google Scholar 

  38. Nyburg SC, Wong-Ng W (1979) Proc Roy Soc (London) A 367:29–45

    CAS  Google Scholar 

  39. Price SL, Stone AJ, Lucas J, Rowland RS, Thornley AE (1994) J Am Chem Soc 116:4910–4918

    Article  CAS  Google Scholar 

  40. Lommerse JPM, Stone AJ, Taylor R, Allen FH (1996) J Am Chem Soc 118:3108–3116

    Article  CAS  Google Scholar 

  41. Valerio G, Raos G, Meille SV, Metrangolo P, Resnati G (2000) J Phys Chem, A 104:1617–1620

    Article  CAS  Google Scholar 

  42. Romaniello P, Lelj F (2002) J Phys Chem, A 106:9114–9119

    Article  CAS  Google Scholar 

  43. Larsen DW, Allred AL (1965) J Phys Chem 69:2400–2401

    CAS  Google Scholar 

  44. Corradi E, Meille SV, Messina MT, Metrangolo P, Resnati G (2000) Angew Chem, Int Ed Engl 39:1782–1786

    Article  CAS  Google Scholar 

  45. Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Acc Chem Res 38:386–395

    Article  CAS  Google Scholar 

  46. Cody V, Murray-Rust P (1984) J Mol Struct 112:189–199

    Article  CAS  Google Scholar 

  47. De Moliner E, Brown NR, Johnson LN (2003) Eur J Biochem 270:3174–3181

    Article  Google Scholar 

  48. Metrangolo P, Pilati T, Resnati G, Stevenazzi A (2003) Curr Opin Colloid Interface Sci 8:215–222

    Article  CAS  Google Scholar 

  49. Thallapally PK, Desiraju GR, Bagien-Bencher M, Masse R, Bourgogne C, Nicoud JF (2002) Chem Commun 1052–1053

  50. Imakubo T, Tajima N, Tamura M, Kato R, Nishio Y, Kajita K (2003) Synth Met 133–134:181–183. DOI 10.1007/s00894-006-0130-2

    Article  Google Scholar 

  51. Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Acc Chem Res 38:393–394

    Article  Google Scholar 

Download references

Acknowledgment

We would like to express our gratitude to Professor Jaroslav Burda, who very kindly provided facilities at the Charles University in Prague so that we could prepare this paper while most of us were evacuees from Hurricane Katrina, which hit New Orleans on August 29, 2005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Politzer.

Additional information

Proceedings of “Modeling Interactions in Biomolecules II”, Prague, September 5th–9th, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Politzer, P., Lane, P., Concha, M.C. et al. An overview of halogen bonding. J Mol Model 13, 305–311 (2007). https://doi.org/10.1007/s00894-006-0154-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-006-0154-7

Keywords

Navigation