Skip to main content
Log in

Theoretical study of hydrogenation of the doubly aromatic B 7 cluster

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We have studied the influence of hydrogenation on the relative stability of the low-lying isomers of the anionic B 7 cluster, computationally. It is known that the pure-boron B 7 cluster has a doubly (σ- and π-) aromatic C6v (3A1) quasi-planar wheel-type triplet global minimum (structure 1), a low-lying σ-aromatic and π-antiaromatic quasi-planar singlet C2v (1A1) isomer 2 (0.7 kcal mol−1 above the global minimum), and a planar doubly (σ- and π-) antiaromatic C2v (1A1) isomer 3 (7.8 kcal mol−1 above the global minimum). However, upon hydrogenation, an inversion in the stability of the species occurs. The planar B7H 2 (C2v, 1A1) isomer 4, originated from the addition of two hydrogen atoms to the doubly antiaromatic B 7 isomer 3, becomes the global minimum structure. The second most stable B7H 2 isomer 5, originated from the quasi-planar triplet wheel isomer 1 of B 7 , was found to be 27 kcal mol−1 higher in energy. The inversion in stability occurs due to the loss of the doubly aromatic character in the wheel-type global minimum isomer (C6v, 3A1) of B 7 upon H2−addition. In contrast, the planar isomer of B 7 (C2v, 1A1) gains aromatic character upon addition of two hydrogen atoms, which makes it more stable.

The B7H2-global minimum structure and its σ-aromatic and π-antiaromatic MOs

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hanley L, Whitten JL, Anderson SL (1988) J Phys Chem 92:5803–5812

    Article  CAS  Google Scholar 

  2. Hanley L, Anderson SL (1987) J Phys Chem 91:5161–5163

    Article  CAS  Google Scholar 

  3. Hanley L, Anderson SL (1988) J Chem Phys 89:2848–2860

    Article  CAS  Google Scholar 

  4. Hintz PA, Ruatta SA, Anderson SL (1990) J Chem Phys 92:292–303

    Article  CAS  Google Scholar 

  5. Ruatta SA, Hintz PA, Anderson SL (1991) J Chem Phys 94:2833–2847

    Article  CAS  Google Scholar 

  6. Hintz PA, Sowa MB, Ruatta SA, Anderson SL (1991) J Chem Phys 94:6446–6458

    Article  CAS  Google Scholar 

  7. Placa SJL, Roland PA, Wynne JJ (1992) Chem Phys Lett 190:163–168

    Article  Google Scholar 

  8. Bonacic-Koutecky V, Fantucci P, Koutecky J (1991) Chem Rev 91:1035–1108

    Article  CAS  Google Scholar 

  9. Kato H, Yamashita K, Morokuma K (1992) Chem Phys Lett 190:361–366

    Article  CAS  Google Scholar 

  10. Ray AK, Howard IA, Kanal KM (1992) Phys Rev B 45:14247–14255

    Article  CAS  Google Scholar 

  11. Boustani I (1997) Phys Rev B 55:16426–16438

    Article  CAS  Google Scholar 

  12. Wang ZX, Schleyer PvR (2001) Science 292:2465–2469

    Article  PubMed  CAS  Google Scholar 

  13. Zhai H-J, Wang LS, Alexandrova AN, Boldyrev AI, Zakrzewski VG (2003) J Phys Chem A 107:9319–9328

    Article  CAS  Google Scholar 

  14. Zhai H-J, Wang LS, Alexandrova AN, Boldyrev AI (2002) J Chem Phys 117:7917–7924

    Article  CAS  Google Scholar 

  15. Alexandrova AN, Boldyrev AI, Zhai HJ, Wang LS, Sheiner E, Fowler PW (2003) J Phys Chem A 107:1359–1369

    Article  CAS  Google Scholar 

  16. Alexandrova AN, Boldyrev AI, Zhai H-J, Wang LS (2004) J Phys Chem A 108:3509–3517

    Article  CAS  Google Scholar 

  17. Zhai H-J, Alexandrova AN, Birch KA, Boldyrev AI, Wang LS (2003) Angew Chem Int Ed 42:6004–6008

    Article  CAS  Google Scholar 

  18. Zhai H-J, Kiran B, Li J, Wang LS (2003) Nat Mater 2:827–833

    Article  PubMed  CAS  Google Scholar 

  19. Chandrasekhar J, Jemmis ED, Schleyer PvR (1979) Tetrahedron Lett 39:3707–3710

    Article  Google Scholar 

  20. Martin-Santamaria S, Rzepa HS (2000) Chem Commun 16:1503–1504

    Article  Google Scholar 

  21. Präsang C, Mlodzianowska A, Sahin Y, Hofmann M, Geiseler G, Massa W, Berndt A (2002) Angew Chem Int Ed 41:3380–3382

    Article  Google Scholar 

  22. Präsang C, Hofmann M, Geiseler G, Massa W, Berndt A (2002) Angew Chem Int Ed 41:1526–1529

    Article  Google Scholar 

  23. Präsang C, Mlodzianowska A, Geiseler G, Massa W, Hofmann M, Berndt A (2003) Pure Appl Chem 75:1175–1182

    Article  Google Scholar 

  24. Amseis P, Mesbah W, Präsang C, Hofmann M, Geiseler G, Massa W, Berndt A (2003) Organometallics 22:1594–1596

    Article  CAS  Google Scholar 

  25. Mesbah W, Präsang C, Hofmann M, Geiseler G, Massa W, Berndt A (2003) Angew Chem Int Ed 42:1717–1719

    Article  CAS  Google Scholar 

  26. Lipscomb WN (1963) Boron hydrides. Benjamin, New York

    Google Scholar 

  27. Muetterties EL (1975) Boron hydride chemistry. Academic, New York

    Google Scholar 

  28. Cotton FA, Wilkinson G, Murillo CA, Bochmann M (1999) Advanced inorganic chemistry, 6th edn. Wiley, New York

    Google Scholar 

  29. Ricca A, Bauschlicher CW Jr (1997) J Chem Phys 106:2317–2322

    Article  CAS  Google Scholar 

  30. Curtiss LA, Pople JA (1989) J Chem Phys 91:4809–4812

    Article  CAS  Google Scholar 

  31. Schleyer PvR, Najafian K, Mebel A (1998) Inorg Chem 37:6765–6772

    Article  PubMed  Google Scholar 

  32. Goss JP, Briddon PR, Jones R, Teukam Z, Ballutaud D, Jomard F, Chevallier J, Bernard M, Deneuville A (2003) Phys Rev B 68:235209–235218

    Article  CAS  Google Scholar 

  33. DiLabio GA, Matusek DR (2000) Chem Phys Lett 317:597–602

    Article  CAS  Google Scholar 

  34. Wang P, Orimo S, Tanabe K, Fujii H (2003) J Alloys Comp 350:218–221

    Article  CAS  Google Scholar 

  35. Boustani I (1995) Chem Phys Lett 240:135–140

    Article  CAS  Google Scholar 

  36. Boustani I, Quandt A, Hernandez E, Rubio A (1999) J Chem Phys 110:3176–3185

    Article  CAS  Google Scholar 

  37. Boustani I (1994) Int J Quantum Chem 52:1081–1111

    Article  CAS  Google Scholar 

  38. Ricca A, Bauschlicher CW Jr (1996) Chem Phys 208:233–242

    Article  CAS  Google Scholar 

  39. Kato H, Tanaka E (1991) J Comput Chem 12:1097–1107

    Article  CAS  Google Scholar 

  40. Alexandrova AN, Boldyrev AI, Fu Y-J, Wang X-B, Wang L-S (2004) J Chem Phys 121:5709–5719

    Article  PubMed  CAS  Google Scholar 

  41. Hartke B (1993) J Phys Chem 97:9973–9976

    Article  CAS  Google Scholar 

  42. Deaven DM, Ho KM (1995) Phys Rev Lett 75:288–291

    Article  PubMed  CAS  Google Scholar 

  43. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, Oxford

    Google Scholar 

  44. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  45. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671–6687

    Article  CAS  Google Scholar 

  46. Frisch MJ, Trucks GM, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu A, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson BG, Chen W, Wang MW, Gonzales C, Pople JA (2003) Gaussian 03, Revision A.1. Gaussian Inc., Pittsburgh

  47. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–654

    Article  CAS  Google Scholar 

  48. Cizek J (1969) Adv Chem Phys 14:35–89

    Article  CAS  Google Scholar 

  49. Knowles PJ, Hampel C, Werner H-J (1993) J Chem Phys 99:5219–5227

    Article  CAS  Google Scholar 

  50. Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PvR (1983) J Comput Chem 4:294–301

    Article  CAS  Google Scholar 

  51. Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265–3269

    Article  CAS  Google Scholar 

  52. Hegarty D, Robb MA (1979) Mol Phys 38:1795–1812

    Article  CAS  Google Scholar 

  53. Eade RHE, Robb MA (1981) Chem Phys Lett 83:362–368

    Article  CAS  Google Scholar 

  54. Schlegel HB, Robb MA (1982) Chem Phys Lett 93:43–46

    Article  CAS  Google Scholar 

  55. Bernardi F, Bottini A, McDouglas JJW, Robb MA, Schlegel HB (1984) Far Symp Chem Soc 19:137–147

    Article  CAS  Google Scholar 

  56. Yamamoto N, Vreven T, Robb MA, Frisch MJ, Schlegel MA (1996) Chem Phys Lett 250:373–378

    Article  CAS  Google Scholar 

  57. Frisch MJ, Ragazos IN, Robb MA, Schlegel HB (1992) Chem Phys Lett 189:524–528

    Article  CAS  Google Scholar 

  58. Carpenter JE, Weinhold F (1988) J Mol Struct (Theochem) 169:41–62

    Article  Google Scholar 

  59. Carpenter JE (1987) PhD Thesis, University of Wisconsin, Madison

  60. Foster JP, Weinhold F (1980) J Am Chem Soc 102:7211–7218

    Article  CAS  Google Scholar 

  61. Reed AE, Weinhold F (1983) J Chem Phys 78:4066–4073

    Article  CAS  Google Scholar 

  62. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  63. Schaftenaar G (1998) MOLDEN 3.4. CAOS/CAMM Center, The Netherlands

Download references

Acknowledgments

This work was supported partially by the donors of The Petroleum Research Fund (ACS-PRF# 38242-AC6), administered by the American Chemical Society, partially by the National Science Foundation (CHE-0404937), and partially by the Summer Research Institute at the Pacific Northwest National Laboratory operated by Battelle, Richland, Washington, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander I. Boldyrev.

Additional information

Dedicated to Professor Dr. Paul von Ragué Schleyer on the occasion of his 75th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexandrova, A.N., Koyle, E. & Boldyrev, A.I. Theoretical study of hydrogenation of the doubly aromatic B 7 cluster. J Mol Model 12, 569–576 (2006). https://doi.org/10.1007/s00894-005-0035-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-005-0035-5

Keywords

Navigation