Skip to main content
Log in

Numerical treatment of two-center overlap integrals

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Among the two-center integrals occurring in the molecular context, the two-center overlap integrals are numerous and difficult to evaluate to a level of high accuracy. The analytical and numerical difficulties arise mainly from the presence of the spherical Bessel integrals in the analytic expressions of these molecular integrals. Different approaches have been used to develop efficient algorithms for the numerical evaluation of the molecular integrals under consideration. These approaches are based on quadrature rules, Levin’s u transform, or the epsilon-algorithm of Wynn. In the present work, we use the nonlinear \(\bar{D}\) transformation of Sidi. This transformation is shown to be highly efficient in improving the convergence of highly oscillatory integrals, and it has been applied to molecular multicenter integrals, namely three-center attraction, hybrid, two-, three-, and four-center two-electron Coulomb and exchange integrals over B functions and over Slater-type functions. It is also been shown that when evaluating these molecular multicenter integrals the \(\bar{D}\) transformation is more efficient compared with the methods cited above. It is now proven that the integrand occurring in the analytic expression of the two-center overlap integrals satisfies all the conditions required to apply the \(\bar{D}\) transformation. A highly accurate algorithm based on this transformation is now developed. Special cases are presented and discussed for a better optimization of the algorithm. The numerical results section illustrates clearly the high efficiency of our algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Weniger EJ, Steinborn EO (1983) J Chem Phys 78:6121–6132

    Article  CAS  Google Scholar 

  2. Weniger EJ, Steinborn EO (1983) Phys Rev A 28:2026–2041

    Article  CAS  Google Scholar 

  3. Grotendorst J, Weniger EJ, Steinborn EO (1986) Phys Rev A 33:3706–3726

    Article  Google Scholar 

  4. Weniger EJ, Steinborn EO (1988) Theor Chim Acta 73:323–336

    Article  Google Scholar 

  5. Homeier HHH, Steinborn EO (1992) Int J Quantum Chem 42:761–778

    Article  CAS  Google Scholar 

  6. Homeier HHH, Weniger EJ, Steinborn EO (1992) Comput Phys Commun 72:269–287

    Article  CAS  Google Scholar 

  7. Steinborn EO (1983) In: Dierckesen HH, Wilson S (eds) Methods in computational molecular physics. D Reidel, Dordrecht

    Google Scholar 

  8. Filter E, Steinborn EO (1978) Phys Rev A 18:1–11

    Article  CAS  Google Scholar 

  9. Prosser FP, Blanchard CH (1962) J Chem Phys 36:1112

    Article  Google Scholar 

  10. Trivedi HP, Steinborn EO (1983) Phys Rev A 27:670–679

    Article  CAS  Google Scholar 

  11. Grotendorst J, Steinborn EO (1988) Phys Rev A 38:3857–3876

    Article  CAS  Google Scholar 

  12. Harris FE (2002) Int J Quantum Chem 88:701–734

    Article  CAS  Google Scholar 

  13. JD Talman (1993) Phys Rev A 48:243–249

    Article  Google Scholar 

  14. Guseinov II, Özmen A, Atav Ü, Yüksel H (1998) Int J Quantum Chem 67:199–204

    Article  CAS  Google Scholar 

  15. Guseinov II, Öztekin E, Hüseyin S (2001) J Mol Struct (THEOCHEM) 536:59–63

    Article  CAS  Google Scholar 

  16. Guseinov II, Mamedov BA (2001) J Mol Struct (THEOCHEM) 538:295–296

    Article  CAS  Google Scholar 

  17. Guseinov II, Mamedov BA, Öner F, Hüseyin S (2001) J Mol Struct (THEOCHEM) 545:265–270

    Article  CAS  Google Scholar 

  18. Guseinov II, Mamedov BA (1999) J Mol Struct (THEOCHEM) 465:1–6

    Article  CAS  Google Scholar 

  19. Mekelleche SM, Baba-Ahmed A (2000) Theor Chem Acc 103:463–468

    CAS  Google Scholar 

  20. Mekelleche SM, Baba-Ahmed A (1997) Int J Quantum Chem 63:843–852

    Article  CAS  Google Scholar 

  21. Shavitt I (1963) The Gaussian function in calculation of statistical mechanics, quantum mechanics. Methods in computational physics 2. In: Alder B, Fernbach S, Rotenberg M (eds) Quantum mechanics. Academic, New York

    Google Scholar 

  22. Steinborn EO, Filter E (1975) Theor Chim Acta 38:273–281

    Article  CAS  Google Scholar 

  23. Slater JC (1930) Phys Rev 36:57–64

    Article  CAS  Google Scholar 

  24. Slater JC (1932) Phys Rev 42:33

    Article  CAS  Google Scholar 

  25. Weniger EJ, Steinborn EO (1989) J Math Phys 30:774–784

    Article  Google Scholar 

  26. Bonham RA, Peacher JL, Cox HL (1964) J Chem Phys 40:3083–3086

    Article  CAS  Google Scholar 

  27. Homeier HHH, Steinborn EO (1992) Int J Quantum Chem 41:399–411

    Article  CAS  Google Scholar 

  28. Wynn P (1956) Math Tables Aids Comput 10:91–96

    Article  Google Scholar 

  29. Levin D (1973) Int J Comput Math B 3:371–388

    Article  Google Scholar 

  30. Levin D, Sidi A (1981) Appl Math Comput 9:175–215

    Article  Google Scholar 

  31. Sidi A (1980) J Inst Math Appl 26:1–20

    Article  Google Scholar 

  32. Sidi A (1997) J Comput Appl Math 78:125–130

    Article  Google Scholar 

  33. Safouhi H, Pinchon D, Hoggan PE (1998) Int J Quantum Chem 70:181–188

    Article  CAS  Google Scholar 

  34. Safouhi H, Hoggan PE (1998) J Phys A: Math Gen 31:8941–4951

    Article  CAS  Google Scholar 

  35. Safouhi H, Hoggan PE (1999) J Math Chem 25:259–280

    Article  CAS  Google Scholar 

  36. Safouhi H, Hoggan PE (1999) J Phys A: Math Gen 32:6203–6217

    Article  Google Scholar 

  37. Safouhi H, Hoggan PE (1999) J Comp Phys 155:331–347

    Article  CAS  Google Scholar 

  38. Safouhi H (2000) J Comput Phys 165:473–495

    Article  CAS  Google Scholar 

  39. Safouhi H (2000) J Math Chem 29:213–232

    Article  Google Scholar 

  40. Safouhi H, Hoggan PE (2001) Int J Quantum Chem 84:580–591

    Article  CAS  Google Scholar 

  41. Homeier HHH, Weniger EJ, Steinborn EO (1992) Comput Phys Commun 72:269–287

    Article  CAS  Google Scholar 

  42. Condon EU, Shortley GH (1970) The theory of atomic spectra. Cambridge University Press, Cambridge

    Google Scholar 

  43. Arfken GB, Weber HJ (1995) Mathematical methods for physicists, 4th edn. Academic, New York

    Google Scholar 

  44. Gaunt JA (1929) Phil Trans R Soc A 228:151–196

    Article  Google Scholar 

  45. Homeier HHH, Steinborn EO (1996) J Mol Struct (THEOCEM) 368:31–37

    CAS  Google Scholar 

  46. Xu Y-L (1997) J Comput Appl Math 85:53–65

    Article  Google Scholar 

  47. Weniger EJ, Steinborn EO (1982) Comput Phys Commun 25:149–157

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author acknowledges the financial support, for this research, by the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Safouhi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Safouhi, H. Numerical treatment of two-center overlap integrals. J Mol Model 12, 213–220 (2006). https://doi.org/10.1007/s00894-005-0020-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-005-0020-z

Keywords

Navigation