Skip to main content

Advertisement

Log in

Chondroitin sulfate prevents peritoneal fibrosis in mice by suppressing NF-κB activation

  • Original Paper
  • Published:
Medical Molecular Morphology Aims and scope Submit manuscript

Abstract

Long-term peritoneal dialysis causes peritoneal fibrosis, and previous reports suggest that inflammation plays a critical role in peritoneal fibrosis. Chondroitin sulfate (CS) suppresses the inflammatory response by preventing activation of nuclear factor (NF)-κB. We examined the effect of CS on the peritoneal fibrosis induced by chlorhexidine gluconate (CG) in mice. CS or water was administered daily. We divided mice into four groups: administered vehicle and water (control); administered vehicle and CS (CS); administered CG and water (CG); and administered CG and CS (CG+CS). Morphologic changes were assessed by Masson’s trichrome staining. Inflammation- and fibrosis-associated factors were assessed by immunohistochemistry. Activation of NF-κB was examined by southwestern histochemistry. CS administration suppressed the progression of submesothelial thickening. The numbers of inflammation- and fibrosis-associated factors -positive cells were significantly decreased in the CG+CS group, compared to the CG group. Based on SWH, the CG+CS group contained significantly fewer NF-κB-activated cells than the CG group. Our results indicate that CS suppresses peritoneal fibrosis via suppression of NF-κB activation. These results suggest that CS has therapeutic potential for peritoneal fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Williams JD, Craig KJ, Topley N, Von Ruhland C, Fallon M, Newman GR, Mackenzie RK, Williams GT (2002) Morphologic changes in the peritoneal membrane of patients with renal disease. J Am Soc Nephrol 13:470–479

    PubMed  Google Scholar 

  2. Devuyst O, Margetts PJ, Topley N (2010) The pathophysiology of the peritoneal membrane. J Am Soc Nephrol 21:1077–1085

    Article  CAS  PubMed  Google Scholar 

  3. Honda K, Hamada C, Nakayama M, Miyazaki M, Sherif AM, Harada T, Hirano H (2008) Impact of uremia, diabetes, and peritoneal dialysis itself on the pathogenesis of peritoneal sclerosis: a quantitative study of peritoneal membrane morphology. Clin J Am Soc Nephrol 3:720–728

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mizuno M, Ito Y, Tanaka A, Suzuki Y, Hiramatsu H, Watanabe M, Tsuruta Y, Matsuoka T, Ito I, Tamai H, Kasuga H, Shimizu H, Kurata H, Inaguma D, Hiramatsu T, Horie M, Naruse T, Maruyama S, Imai E, Yuzawa Y, Matsuo S (2011) Peritonitis is still an important factor for withdrawal from peritoneal dialysis therapy in the Tokai area of Japan. Clin Exp Nephrol 15:727–737

    Article  PubMed  Google Scholar 

  5. Yung S, Chan TM (2003) Preventing peritoneal fibrosis–insights from the laboratory. Perit Dial Int 23:S37–S41

    CAS  PubMed  Google Scholar 

  6. Baeuerle PA, Henkel T (1994) Function and activation of NF-κB in the immune system. Annu Rev Immunol 12:141–179

    Article  CAS  PubMed  Google Scholar 

  7. Schreck R, Rieber P, Baeuerle PA (1991) Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-κB transcription factor and HIV-1. EMBO J 10:2247–2258

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ha H, Yu MR, Choi YJ, Kitamura M, Lee HB (2002) Role of high glucose-induced nuclear factor-kappaB activation in monocyte chemoattractant protein-1 expression by mesangial cells. J Am Soc Nephrol 13:894–902

    CAS  PubMed  Google Scholar 

  9. Rovin BH, Dickerson JA, Tan LC, Hebert CA (1995) Activation of nuclear factor-kappa B correlates with MCP-1 expression by human mesangial cells. Kidney Int 48:1263–1271

    Article  CAS  PubMed  Google Scholar 

  10. Kihm LP, Wibisono D, Muller-Krebs S, Pfisterer F, Morath C, Gross ML, Morcos M, Seregin Y, Bierhaus A, Nawroth PP, Zeier M, Schwenger V (2008) RAGE expression in the human peritoneal membrane. Nephrol Dial Transplant 23:3302–3306

    Article  CAS  PubMed  Google Scholar 

  11. Kitamura M, Nishino T, Obata Y, Furusu A, Hishikawa Y, Koji T, Kohno S (2012) Epigallocatechin gallate suppresses peritoneal fibrosis in mice. Chem Biol Interact 195:95–104

    Article  CAS  PubMed  Google Scholar 

  12. Hirose M, Nishino T, Obata Y, Nakazawa M, Nakazawa Y, Furusu A, Abe K, Miyazaki M, Koji T, Kohno S (2013) 22-Oxacalcitriol prevents progression of peritoneal fibrosis in a mouse model. Perit Dial Int 33:132–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Volpi N (2011) Anti-inflammatory activity of chondroitin sulphate: new functions from an old natural macromolecule. Inflammopharmacology 19:299–306

    Article  CAS  PubMed  Google Scholar 

  14. du Souich P, Garcia AG, Verges J, Montell E (2009) Immunomodulatory and anti-inflammatory effects of chondroitin sulphate. J Cell Mol Med 13:1451–1463

    Article  PubMed  PubMed Central  Google Scholar 

  15. Baeza-Raja B, Muñoz-Cánoves P (2004) p38 MAPK-induced nuclear factor-kappaB activity is required for skeletal muscle differentiation: role of interleukin-6. Mol Biol Cell 15:2013–2026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Omata T, Itokazu Y, Inoue N, Segawa Y (2000) Effects of chondroitin sulfate-C on articular cartilage destruction in murine collagen-induced arthritis. Arzneimittelforschung 50:148–153

    CAS  PubMed  Google Scholar 

  17. Hori Y, Hoshino J, Yamazaki C, Sekiguchi T, Miyauchi S, Horie K (2001) Effects of chondroitin sulfate on colitis induced by dextran sulfate sodium in rats. Jpn J Pharmacol 85:155–160

    Article  CAS  PubMed  Google Scholar 

  18. Herrero-Beaumont G, Marcos ME, Sanchez-Pernaute O, Granados R, Ortega L, Montell E, Verges J, Egido J, Largo R (2008) Effect of chondroitin sulphate in a rabbit model of atherosclerosis aggravated by chronic arthritis. Br J Pharmacol 154:843–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Obata Y, Nishino T, Kushibiki T, Tomoshige R, Xia Z, Miyazaki M, Abe K, Koji T, Tabata Y, Kohno S (2012) HSP47 siRNA conjugated with cationized gelatin microspheres suppresses peritoneal fibrosis in mice. Acta Biomater 8:2688–2696

    Article  CAS  PubMed  Google Scholar 

  20. Tan Y, Zhang JS, Huang L (2002) Codelivery of NF-κB decoy-related oligodeoxynucleotide improves LPD-mediated systemic gene transfer. Mol Ther 6:804–812

    Article  CAS  PubMed  Google Scholar 

  21. Koji T, Komuta K, Nozawa M, Yamada S, Nakane PK (1994) Localization of cyclic adenosine 3′,5′-monophosphate-responsive element (CRE)-binding proteins by southwestern histochemistry. J Histochem Cytochem 42:1399–1405

    Article  CAS  PubMed  Google Scholar 

  22. Hishikawa Y, Damavandi E, Izumi S, Koji T (2003) Molecular histochemical analysis of estrogen receptor alpha and beta expressions in the mouse ovary: in situ hybridization and southwestern histochemistry. Med Electron Microsc 36:67–73

    CAS  PubMed  Google Scholar 

  23. Ashizawa M, Miyazaki M, Abe K, Furusu A, Isomoto H, Harada T, Ozono Y, Sakai H, Koji T, Kohno S (2003) Detection of nuclear factor-κB in IgA nephropathy using Southwestern histochemistry. Am J Kidney Dis 42:76–86

    Article  CAS  PubMed  Google Scholar 

  24. Lin CY, Chen WP, Fu LW, Yang LY, Huang PT (1997) Persistent transforming growth factor beta 1 expression may predict peritoneal fibrosis in CAPD patients with frequent peritonitis occurrence. Adv Perit Dial 13:64–71

    CAS  PubMed  Google Scholar 

  25. Margetts PJ, Bonniaud P, Liu L, Hoff CM, Holmes CJ, West-Mays JA, Kelly MM (2005) Transient overexpression of TGFβ1 induces epithelial mesenchymal transition in the rodent peritoneum. J Am Soc Nephrol 16:425–436

    Article  CAS  PubMed  Google Scholar 

  26. Biswas SK, Mantovani A (2010) Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 11:889–896

    Article  CAS  PubMed  Google Scholar 

  27. Yokoi H, Kasahara M, Mori K, Ogawa Y, Kuwabara T, Imamaki H, Kawanishi T, Koga K, Ishii A, Kato Y, Mori KP, Toda N, Ohno S, Muramatsu H, Muramatsu T, Sugawara A, Mukoyama M, Nakao K (2012) Pleiotrophin triggers inflammation and increased peritoneal permeability leading to peritoneal fibrosis. Kidney Int 81:160–169

    Article  CAS  PubMed  Google Scholar 

  28. Miyazaki M, Yuzawa Y (2005) The role of peritoneal fibrosis in encapsulating peritoneal sclerosis. Perit Dial Int 25:S48–S56

    PubMed  Google Scholar 

  29. Michel BA, Stucki G, Frey D, De Vathaire F, Vignon E, Bruehlmann P, Uebelhart D (2005) Chondroitins 4 and 6 sulfate in osteoarthritis of the knee: a randomized, controlled trial. Arthritis Rheum 52:779–786

    Article  CAS  PubMed  Google Scholar 

  30. Wildi LM, Raynauld JP, Martel-Pelletier J, Beaulieu A, Bessette L, Morin F, Abram F, Dorais M, Pelletier JP (2011) Chondroitin sulphate reduces both cartilage volume loss and bone marrow lesions in knee osteoarthritis patients starting as early as 6 months after initiation of therapy: a randomised, double-blind, placebo-controlled pilot study using MRI. Ann Rheum Dis 70:982–989

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the Japanese Association of Dialysis Physicians (No. 25067). We would like to thank Ms. Ryoko Yamamoto and Ms. Ayako Matsuo for the excellent experimental assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoko Obata.

Ethics declarations

Conflict of interest

All authors state that they have no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abe, S., Obata, Y., Oka, S. et al. Chondroitin sulfate prevents peritoneal fibrosis in mice by suppressing NF-κB activation. Med Mol Morphol 49, 144–153 (2016). https://doi.org/10.1007/s00795-016-0133-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00795-016-0133-8

Keywords

Navigation