Skip to main content

Advertisement

Log in

Overexpression of p53 protein in human tumors

  • Review
  • Published:
Medical Molecular Morphology Aims and scope Submit manuscript

Abstract

According to the current concept of carcinogenesis, neoplastic transformation consists of multistep accumulations of adverse genetic and epigenetic events. p53 is a transcription factor that regulates cellular response to diverse forms of stress through a complex network which monitors genome integrity and cell homeostasis. Mutant p53 loss-of-function, dominant-negative, and gain-offunction properties have been implicated in the development of a wide variety of human cancers, and it is generally accepted that p53 is a component in biochemical pathways central to human carcinogenesis. Study of p53 has come to the forefront of cancer research, and detection of its abnormalities during the development of tumors may have diagnostic, prognostic, and therapeutic implications. In this review, we focus on recent research on overexpression of mutant p53 in human cancer, with an emphasis on mutant p53 regulation, gain of function of mutant p53 in transcriptional effects, and the diagnostic, prognostic, and predictive value of p53 overexpression in human cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Olivier M, Eeles R, Hollstein M, Khan MA, Harris CC, Hainaut P (2002) The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat 19:607–614

    Article  PubMed  CAS  Google Scholar 

  2. Hainaut P, Hollstein M (2000) p53 and human cancer: the first ten thousand mutations. Adv Cancer Res 77:81–137

    Article  PubMed  CAS  Google Scholar 

  3. Kropveld A, Rozemuller EH, Leppers FG, Scheidel KC, de Weger RA, Koole R, Hordijk GJ, Slootweg PJ, Tilanus MG (1999) Sequencing analysis of RNA and DNA of exons 1 through 11 shows p53 gene alterations to be present in almost 100% of the head and neck squamous cell cancers. Lab Invest 79:347–353

    PubMed  CAS  Google Scholar 

  4. Lane DP, Benchimol S (1990) p53: oncogene or anti-oncogene? Genes Dev 4:1–8

    Article  PubMed  CAS  Google Scholar 

  5. Soussi T, Caron de Fromentel C, May P (1990) Structural aspects of the p53 protein in relation to gene evolution. Oncogene 5:945–952

    PubMed  CAS  Google Scholar 

  6. Eliyahu D, Raz A, Gruss P, Givol D, Oren M (1984) Participation of p53 cellular tumour antigen in transformation of normal embryonic cells. Nature (Lond) 312:646–649

    Article  CAS  Google Scholar 

  7. Jenkins JR, Rudge K, Currie GA (1984) Cellular immortalization by a cDNA clone encoding the transformation-associated phosphoprotein p53. Nature (Lond) 312:651–654

    Article  CAS  Google Scholar 

  8. Parada LF, Land H, Weinberg RA, Wolf D, Rotter V (1984) Cooperation between gene encoding p53 antigen and ras in cellular transformation. Nature (Lond) 312:649–651

    Article  CAS  Google Scholar 

  9. Fearon ER, Hamilton SR, Vogelstein B (1987) Clonal analysis of human colorectal tumors. Science 238:193–197

    Article  PubMed  CAS  Google Scholar 

  10. Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, Nakamura Y, White R, Smits AM, Bos JL (1988) Genetic alterations during colorectal tumor development. N Engl J Med 319:525–532

    Article  PubMed  CAS  Google Scholar 

  11. Yokota J, Wada M, Shimosato Y, Terada M, Sugimura T (1987) Loss of heterozygosity on chromosomes 3, 1, and 17 in small-cell carcinoma and on chromosome 3 in adenocarcinoma of the lung. Proc Natl Acad Sci USA 84:9252–9256

    Article  PubMed  CAS  Google Scholar 

  12. James CD, Carlbom E, Dumanski JP, Hansen M, Nordenskjold M, Collins VP, Cavenee WK (1988) Clonal genomic alterations in glioma malignancy stages. Cancer Res 48:5546–5551

    PubMed  CAS  Google Scholar 

  13. Mackay J, Steel CM, Elder PA, Forrest AP, Evans HJ (1988) Allele loss on short arm of chromosome 17 in breast cancer. Lancet 2:1384–1385

    Article  PubMed  CAS  Google Scholar 

  14. Baker SJ, Fearon ER, Nigro JM, Hamilton SR, Preisinger AC, Jessup JM, van Tuinen P, Ledbetter DH, Baker DF, Nakamura Y, White R, Vogelstein B (1989) Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 244:217–221

    Article  PubMed  CAS  Google Scholar 

  15. Nigro JM, Baker SJ, Preisinger AC, Jessup JM, Hostetter R, Cleary K, Bigner SH, Davidson N, Baylin S, Devilee P, Glover T, Collins FS, Weston A, Modali R, Harris CC, Vogelstein B (1989) Mutations in the p53 gene occur in diverse human tumor types. Nature (Lond) 342:705–708

    Article  CAS  Google Scholar 

  16. Finlay CA, Hinds P, Levine A (1989) The p53 proto-oncogene can act as a suppressor of transformation. Cell 57:1083–1093

    Article  PubMed  CAS  Google Scholar 

  17. Mercer WE, Amin M, Sauve GJ (1990) Wild type human p53 is antiproliferative in SV40-transformed hamster cells. Oncogene 5:973–980

    PubMed  CAS  Google Scholar 

  18. Iggo R, Gatter K, Bartek J (1990) Increased expression of mutant forms of p53 oncogene in primary lung cancer. Lancet 335:675–679

    Article  PubMed  CAS  Google Scholar 

  19. Gannon JV, Greaves R, Iggo R (1990) Activating mutations in p53 produce a common conformational effect. A monoclonal antibody specific for the mutant form. EMBO J 9:1595–1602

    PubMed  CAS  Google Scholar 

  20. Bartek J (1991) Aberrant expression of the p53 oncoprotein is a common feature of a wide spectrum of human malignancies. Oncogene 6:1699–1703

    PubMed  CAS  Google Scholar 

  21. Isobe M, Emanuel BS, Givol D, Oren M, Croce CM (1986) Localization of gene for human p53 tumour antigen to band 17p13. Nature (Lond) 320:84–85

    Article  CAS  Google Scholar 

  22. McBride OW, Merry D, Givol D (1986) The gene for human p53 cellular tumor antigen is located on chromosome 17 short arm (17p13). Proc Natl Acad Sci USA 83:130–134

    Article  PubMed  CAS  Google Scholar 

  23. Miller C, Mohandas T, Wolf D (1986) Human p53 gene localized to short arm of chromosome 17. Nature (Lond) 319:783–784

    Article  CAS  Google Scholar 

  24. Cho Y, Gorina S, Jeffrey PD, Pavletich NP (1994) Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265:346–355

    Article  PubMed  CAS  Google Scholar 

  25. Hollstein M, Sidransky D, Vogelstein B, Harris CC (1991) p53 mutations in human cancers. Science 253:49–53

    Article  PubMed  CAS  Google Scholar 

  26. Caron de Fromentel C, Soussi T (1992) TP53 tumor suppressor gene: a model for investigating human mutagenesis. Genes Chromosomes Cancer 4:1–15

    Article  PubMed  CAS  Google Scholar 

  27. Levine AJ, Momand J, Finlay CA (1991) The p53 tumor suppressor gene. Nature (Lond) 351:453–456

    Article  CAS  Google Scholar 

  28. Bullock AN, Fersht AR (2001) Rescuing the function of mutant p53. Nat Rev Cancer 1:68–76

    Article  PubMed  CAS  Google Scholar 

  29. Fields S, Jang SK (1990) Presence of a potent transcription activating sequence in the p53 protein. Science 249:1046–1049

    Article  PubMed  CAS  Google Scholar 

  30. Raycroft L, Wu H, Lozano G (1990) Transcriptional activation by wild-type but not transforming mutations of the p53 antioncogene. Science 249:1049–1051

    Article  PubMed  CAS  Google Scholar 

  31. Stürzbecher HW, Brain R, Addison C, Rudge K, Remm M, Grimaldi M, Keenan E, Jenkins JR (1992) A C-terminal a-helix plus basic region motif is the major structural determinant of p53 tetramerization. Oncogene 7:1513–1523

    PubMed  Google Scholar 

  32. Iwabuchi K, Li B, Bartel P, Fields S (1993) Use of the two-hybrid to identify the domain of p53 involved in oligomerization. Oncogene 8:1693–1696

    PubMed  CAS  Google Scholar 

  33. Hollstein M, Hainaut P (2010) Massively regulated genes: the example of TP53. J Pathol 220:164–173

    PubMed  CAS  Google Scholar 

  34. Courtois S, de Fromentel CC, Hainaut P (2004) p53 protein variants: structural and functional similarities with p63 and p73 isoforms. Oncogene 23:631–638

    Article  PubMed  CAS  Google Scholar 

  35. Bourdon JC, Fernandes K, Murray-Zmijewski F, Liu G, Diot A, Xirodimas DP, Saville MK, Lane DP (2005) p53 isoforms can regulate p53 transcriptional activity. Genes Dev 19:2122–2137

    Article  PubMed  CAS  Google Scholar 

  36. Marcel V, Hainaut P (2009) p53 isoforms-a conspiracy to kidnap p53 tumor suppressor activity? Cell Mol Life Sci 66:391–406

    Article  PubMed  CAS  Google Scholar 

  37. Lane DP, Crawford LV (1979) T-antigen is bound to host protein in SV40-transformed cells. Nature (Lond) 278:261–263

    Article  CAS  Google Scholar 

  38. Linzer DIH, Levine AJ (1979) Characterization of a 54 K dalton cellular SV40 tumour antigen present in SV40 transformed cells and uninfected embryonal carcinoma cells. Cell 17:43–52

    Article  PubMed  CAS  Google Scholar 

  39. Werness BA, Levine AJ, Howley P (1990) Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 248:76–79

    Article  PubMed  CAS  Google Scholar 

  40. Szekely L, Selivanova G, Magnusson KP, Klein G, Wiman KG (1993) EBNA-5, an Epstein-Barr virus-encoded nuclear antigen, binds to the retinoblastoma and p53 proteins. Proc Natl Acad Sci USA 90:5455–5459

    Article  PubMed  CAS  Google Scholar 

  41. Sarnow P, Ho YS, Williams J, Levine AJ (1982) Adenovirus E1b-58 kd tumor antigen and SV40 large tumor antigen are physically associated with the same 54 kd cellular protein in transformed cells. Cell 28:387–394

    Article  PubMed  CAS  Google Scholar 

  42. Feitelson MA, Zhu M, Duan LX, London WT (1993) Hepatitis B x antigen and p53 are associated in vitro and in liver tissues from patients with primary hepatocellular carcinoma. Oncogene 8:1109–1117

    PubMed  CAS  Google Scholar 

  43. Symonds H, Chen JD, Van Dyke T (1991) Complex formation between the lymphotropic papovavirus large tumor antigen and the tumor suppressor protein p53. J Virol 65:5417–5424

    PubMed  CAS  Google Scholar 

  44. Rogel A, Popliker M, Webb CG, Oren M (1985) p53 cellular tumor antigen: analysis of mRNA levels in normal adult tissues, embryos, and tumors. Mol Cell Biol 5:2851–2855

    PubMed  CAS  Google Scholar 

  45. Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM (1990) The E6 oncoprotein encoded by human papilloma virus type 16 and 18 promotes degradation of p53. Cell 63:1129–1136

    Article  PubMed  CAS  Google Scholar 

  46. Jansson M, Durant ST, Cho EC, Sheahan S, Edelmann M, Kessler B, La Thanque NB (2008) Arginine methylation regulates the p53 response. Nat Cell Biol 10:1431–1439

    Article  PubMed  CAS  Google Scholar 

  47. Han MK, Song EK, Guo Y, Ou X, Mantel C, Broxmeyer HE (2008) SIRT1 regulates apoptosis and Nanog expression in mouse embryonic stem cells by controlling p53 subcellular localization. Cell Stem Cell 2:241–251

    Article  PubMed  CAS  Google Scholar 

  48. Gurney EG, Harrison RO, Fennol J (1980) Monoclonal antibodies against simian virus 40 T antigens: evidence for distinct subclasses of large T antigen and for similarities among nonviral T antigens. J Virol 34:752–763

    PubMed  CAS  Google Scholar 

  49. Dippold WG, Jay G, DeLeo A, Khoury G, Old LJ (1981) p53 transformation-related protein: detection by monoclonal antibody in mouse and human cells. Proc Natl Acad Sci USA 78:1695–1699

    Article  PubMed  CAS  Google Scholar 

  50. Rotter V, Abutbul H, Ben-Ze’ev A (1983) p53 transformation-related protein accumulates in the nucleus of transformed fibroblasts in association with the chromatin and is found in the cytoplasm of non-transformed fibroblasts. EMBO J 2:1041–1047

    PubMed  CAS  Google Scholar 

  51. Deppert W, Hang M (1986) Evidence for free and metabolically stable p53 protein in nuclear subfractions of simian virus 40-transformed cells. Mol Cell Biol 6:2233–2240

    PubMed  CAS  Google Scholar 

  52. Shaulsky G, Ben-Ze’ev A, Rotter V (1990) Subcellular distribution of the p53 protein during the cell cycle of Balb/c 3T3 cells. Oncogene 5:1707–1711

    PubMed  CAS  Google Scholar 

  53. Puvion E, Duthu A, Harper F, Ehrhart JC, Viron A, May P (1988) Intranuclear distribution of SV40 large T-antigen and transformation-related protein p53 in abortively infected cells. Exp Cell Res 177:73–89

    Article  PubMed  CAS  Google Scholar 

  54. Pietrancosta N, Moumen A, Dono R, Lingor P, Planchamp V, Lamballe F, Bähr M, Kraus JL, Maina F (2006) Imino-tetrahydrobenzothiazole derivatives as p53 inhibitors: discovery of a highly potent in vivo inhibitor and its action mechanism. J Med Chem 49:3645–3652

    Article  PubMed  CAS  Google Scholar 

  55. Laptenko O, Prives C (2006) Transcriptional regulation by p53: one protein, many possibilities. Cell Death Differ 13:951–961

    Article  PubMed  CAS  Google Scholar 

  56. Barboza JA, Iwakuma T, Terzian T, El-Naggar AK, Lozano G (2008) Mdm2 and Mdm4 loss regulates distinct p53 activities. Mol Cancer Res 6:947–954

    Article  PubMed  CAS  Google Scholar 

  57. Chi SW, Lee SH, Kim DH, Ahn MJ, Kim JS, Woo JY, Torizawa T, Kainosho M, Han KH (2005) Structural details on mdm2-p53 interaction. J Biol Chem 280:38795–38802

    Article  PubMed  CAS  Google Scholar 

  58. Ashcroft M, Taya Y, Vousden KH (2000) Stress signals utilize multiple pathways to stabilize p53. Mol Cel Biol 20:3224–3233

    Article  CAS  Google Scholar 

  59. Shieh SY, Ikeda M, Taya Y, Prives C (1997) DNA damage-induced phosphrylation of p53 alleviates inhibition by MDM2. Cell 91:325–334

    Article  PubMed  CAS  Google Scholar 

  60. Shieh SY, Ahn J, Tamai K, Taya Y, Prives C (2000) The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev 14:289–300

    PubMed  CAS  Google Scholar 

  61. Appella E, Anderson CW (2001) Post-translational modifications and activation of p53 by genotoxic stresses. Eur J Biochem 268:2764–2772

    Article  PubMed  CAS  Google Scholar 

  62. Ashcroft M, Kubbutat MH, Vousden KH (1999) Regulation of p53 function and stability by phosphorylation. Mol Cell Biol 19:1751–1758

    PubMed  CAS  Google Scholar 

  63. Ayed A, Mulder FA, Yi GS, Lu Y, Kay LE, Arrowsmith CH (2001) Latent and active p53 are identical in conformation. Nat Struct Biol 8:756–760

    Article  PubMed  CAS  Google Scholar 

  64. Kruse JP, Gu W (2009) Modes of p53 regulation. Cell 137:609–622

    Article  PubMed  CAS  Google Scholar 

  65. Sykes SM, Mellert HS, Holbert MA, Li K, Marmorstein R, Lane WS, McMahon SB (2006) Acethylation of the p53 DNA-binding domain regulates apoptosis induction. Mol Cell 24:841–851

    Article  PubMed  CAS  Google Scholar 

  66. Wang C, Chen L, Hou X, Li Z, Kabra N, Ma Y, Nemoto S, Finkel T, Gu W, Cress WD, Chen J (2006) Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage. Nat Cell Biol 8:1025–1031

    Article  PubMed  CAS  Google Scholar 

  67. Books CL, Gu W (2003) Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr Opin Cell Biol 15:164–171

    Article  CAS  Google Scholar 

  68. Tang Y, Zhao W, Chen Y, Zhao Y, Gu W (2008) Acetylation is indispensable for p53 activation. Cell 133:612–626

    Article  PubMed  CAS  Google Scholar 

  69. Bargonetti J, Friedman PN, Kern SE, Vogelstein B, Prives C (1991) Wild-type but not mutant p53 immunopurified proteins bind to sequences adjacent to the SV40 origin of replication. Cell 65:1083–1091

    Article  PubMed  CAS  Google Scholar 

  70. Kruse JP, Gu W (2008) SnapShot: p53 posttranslational modifications. Cell 133:930–930, e1

    Article  PubMed  CAS  Google Scholar 

  71. Carter S, Vousden KH (2009) Modifications of p53: competing for the lysines. Curr Opin Genet Dev 19:18–24

    Article  PubMed  CAS  Google Scholar 

  72. Weisz L, Oren M, Rotter V (2007) Transcription regulation by mutant p53. Oncogene 26:2202–2211

    Article  PubMed  CAS  Google Scholar 

  73. Benchimol S, Pim D, Crawford L (1982) Radioimmunoassay of the cellular protein p53 in mouse and human cell lines. EMBO J 7:1055–1062

    Google Scholar 

  74. Porter PL, Gown AM, Kramp SG, Coltrera MD (1992) Widespread p53 overexpression in human malignant tumors. An immunohistochemical study using methacarn-fixed, embedded tissue. Am J Pathol 140:145–153

    PubMed  CAS  Google Scholar 

  75. Furihata M, Sonobe H, Ohtsuki Y (1995) The aberrant p53 protein (review). Int J Oncol 6:1209–1226

    PubMed  CAS  Google Scholar 

  76. Lang GA, Iwakuma T, Suh YA, Liu G, Rao VA, Parant JM, Valentin-Vega YA, Terzian T, Caldwell LC, Strong LC, El-Naggar AK, Lozano G (2004) Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell 119:861–872

    Article  PubMed  CAS  Google Scholar 

  77. Olive KP, Tuveson DA, Ruhe ZC, Yin B, Willis NA, Bronson RT, Crowley D, Jacks T (2004) Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 119:847–860

    Article  PubMed  CAS  Google Scholar 

  78. Song H, Hollstein M, Xu Y (2007) p53 gain-of-function cancer mutants induce genetic instability by inactivating ATM. Nat Cell Biol 9:573–580

    Article  PubMed  CAS  Google Scholar 

  79. Terzian T, Suh YA, Iwakuma T, Post SM, Neumann M, Lang GA, Van Pelt CS, Lozano G (2008) The inherent instability of mutant p53 is alleviated by Mdm2 or p16INK4a loss. Genes Dev 22:1337–1344

    Article  PubMed  CAS  Google Scholar 

  80. McLure KG, Lee PW (1998) How p53 binds DNA as a tetramer. EMBO J 17:3342–3350

    Article  PubMed  CAS  Google Scholar 

  81. Milner J, Medcalf AJ (1991) Co-translation of activated mutant p53 with wild type drives the wild-type p53 protein into the mutant conformation. Cell 65:765–774

    Article  PubMed  CAS  Google Scholar 

  82. Hinds P, Finlay C, Levine AJ (1989) Mutation is required to activate the p53 gene for cooperation with the ras oncogene and transformation. J Virol 63:739–746

    PubMed  CAS  Google Scholar 

  83. Varley JM, Thorncroft M, McGown G, Appleby J, Kelsey AM, Tricker KJ, Evans DGR, Birch JM (1997) A detailed study of loss of heterozygosity on chromosome 17 in tumours from Li-Fraumeni patients carrying a mutation to the TP53 gene. Oncogene 14:865–871

    Article  PubMed  CAS  Google Scholar 

  84. Erber R, Conradt C, Homann N, Enders C, Finck M, Dietz A, Weidauer H, Bosch FX (1998) TP53 DNA contact mutations are selectively associated with allelic loss and have a strong clinical impact in head and neck cancer. Oncogene 16:1671–1679

    Article  PubMed  CAS  Google Scholar 

  85. Birch JM, Blair V, Kelsey AM, Evans DG, Harris M, Tricker KJ, Varley JM (1998) Cancer phenotype correlates with constitutional TP53 genotype in families with the Li-Fraumeni syndrome. Oncogene 17:1061–1068

    Article  PubMed  CAS  Google Scholar 

  86. Xu Y (2006) DNA damage: a trigger of innate immunity but a requirement for adaptive immune homeostasis. Nat Rev Immunol 6:261–270

    Article  PubMed  CAS  Google Scholar 

  87. Wolf D, Admon S, Oren M (1984) Abelson murine leukemia virustransformed cells that lack p53 protein synthesis express aberrant p53 mRNA species. Mol Cell Biol 4:552–558

    PubMed  CAS  Google Scholar 

  88. Shaulsky G, Goldfinger N, Rotter V (1991) Alterations in tumor development in vivo mediated by expression of wild-type or mutant p53 proteins. Cancer Res 51:5232–5237

    PubMed  CAS  Google Scholar 

  89. Crook T, Marston NJ, Sara EA, Vousden KH (1994) Transcriptional activation by p53 correlates with suppression of growth but not transformation. Cell 79:817–827

    Article  PubMed  CAS  Google Scholar 

  90. Wolf D, Harris N, Rotter V (1984) Reconstitution of p53 expression in a nonproducer Ab-MuLV-transformed cell line by transfection of a functional p53 gene. Cell 38:119–126

    Article  PubMed  CAS  Google Scholar 

  91. Shaulsky G, Goldfinger N, Rotter V (1991) Alterations in tumor development in vivo mediated by expression of wild type or mutant p53 proteins. Cancer Res 51:5232–5237

    PubMed  CAS  Google Scholar 

  92. Dittmer D, Pati S, Zambetti G, Chu S, Teresky AK, Moore M, Finlay C, Levine AJ (1993) Gain of function mutations in p53. Nat Genet 4:42–46

    Article  PubMed  CAS  Google Scholar 

  93. Yin Y, Tainsky MA, Bischoff FZ, Strong LC, Wahl GM (1992) Wild-type p53 restores cell cycle control and inhibits gene amplification in cells with mutant p53 alleles. Cell 70:937–948

    Article  PubMed  CAS  Google Scholar 

  94. Hartwell L (1992) Defects in a cell cycle checkpoint may be responsible for the genomic instability of cancer cells. Cell 71:543–546

    Article  PubMed  CAS  Google Scholar 

  95. Di Como CJ, Gaiddon C, Prives C (1999) p73 function is inhibited by tumor-derived p53 mutants in mammalian cells. Mol Cell Biol 19:1438–1449

    PubMed  Google Scholar 

  96. Gaiddon C, Lokshin M, Ahn J, Zhang T, Prives C (2001) A subset of tumor-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain. Mol Cell Biol 21:1874–1887

    Article  PubMed  CAS  Google Scholar 

  97. Deyoung MP, Ellisen LW (2007) p63 and p73 in human cancer: defining the network. Oncogene 26:5169–5183

    Article  PubMed  CAS  Google Scholar 

  98. Weisz L, Oren M, Rotter V (2007) Transcription regulation by mutant p53. Oncogene 26:2202–2211

    Article  PubMed  CAS  Google Scholar 

  99. Kim E, Deppert W (2004) Transcriptional activities of mutant p53: when mutations are more than a loss. J Cell Biochem 93: 878–886

    Article  PubMed  CAS  Google Scholar 

  100. Strano S, Dell’Orso S, Di Agostino S, Fontemaggi G, Sacchi A, Blandino G (2007) Mutant p53: an oncogenic transcription factor. Oncogene 26:2212–2219

    Article  PubMed  CAS  Google Scholar 

  101. Di Agostino S, Strano S, Emilliozzi V, Zerbini V, Mottolese M, Sacchi A, Blandino G, Piaggio G (2006) Gain of function of mutant p53: the mutant p53/NF-Y protein complex reveals an aberrant transcriptional mechanism of cell cycle regulation. Cancer Cell 10:191–202

    Article  PubMed  CAS  Google Scholar 

  102. Nowell PC (1976) The clonal evolution of tumor cell populations. Science 94: 23–28

    Article  Google Scholar 

  103. Fearon ER, Vogelstein BA (1990) A genetic model for colorectal tumorigenesis. Cell 61:759–767

    Article  PubMed  CAS  Google Scholar 

  104. Woolner LB (1986) Lung. In: Henson DE, Albores-Saavedra J (eds) The pathology of incipient neoplasia. Saunders, Philadelphia, pp 57–85

    Google Scholar 

  105. Auerbach O, Hammond E, Carfinkel L (1979) Changes in bronchial epitheium in relation to cigarette smoking, 1955–1960 vs. 1970–1977. N Engl J Med 300:381–386

    Article  PubMed  CAS  Google Scholar 

  106. Olivier M, Hainaut P, Borresen-Dale AL (2005) Prognostic and predictive value of TP53 mutations in human cancer. In: Hainaut P, Wiman KG (eds) 25 years of p53 research. Springer, New York, pp 321–338

    Chapter  Google Scholar 

  107. Yamasaki I, Furihata M, Ohtsuki Y, Yamashita M, Morioka M, Shuin T (1996) Overexpression of MDM2 and p53 protein is infrequently but significantly associated with progression of human prostatic adenocarcinoma. Oncol Rep 3:925–929

    PubMed  CAS  Google Scholar 

  108. Matsumoto M, Furihata M, Kurabayashi A, Ohtsuki Y (2004) Phosphorylation state of tumor-suppressor gene p53 product overexpressed in skin tumors. Oncol Rep 12:1039–1043

    PubMed  CAS  Google Scholar 

  109. Matsumoto M, Furihata M, Kurabayashi A, Sasaguri S, Araki K, Hayashi H, Ohtsuki Y (2004) Prognostic significance of serine 392 phosphorylation in overexpressed p53 protein in human esophageal squamous cell carcinoma. Oncology 67:143–150

    Article  PubMed  CAS  Google Scholar 

  110. Furihata M, Inoue K, Ohtsuki Y, Hashimoto H, Terao N, Fujita Y (1993) High-risk human papillomavirus infections and overexpression of p53 protein as prognostic indicators in transitional cell carcinoma of the urinary bladder. Cancer Res 53:4823–4827

    PubMed  CAS  Google Scholar 

  111. Furihata M, Takeuchi T, Matsumoto M, Kurabayashi A, Ohtsuki Y, Terao N, Kuwahara M, Shuin T (2002) p53 mutation arising in Arg72 allele in the tumorigenesis and development of carcinoma of the urinary tract. Clin Cancer Res 8:1192–1195

    PubMed  CAS  Google Scholar 

  112. Ryu MH, Kang YK, Jang SJ, Kim TW, Lee H, Kim JS, Park YH, Lee SS, Ryoo BY, Chang HM, Lee JL, Yook JH, Kim BS, Lee JS (2007) Prognostic significance of p53 gene mutations and protein overexpression in localized gastrointestinal stromal tumours. Histopathology (Oxf) 51:379–389

    Article  CAS  Google Scholar 

  113. Bartel F, Jung J, Böhnke A, Gradhand E, Zeng K, Thomssen C, Hauptmann S (2008) Both germ line and somatic genetics of the p53 pathway affect ovarian cancer incidence and survival. Clin Cancer Res 14:89–96

    Article  PubMed  CAS  Google Scholar 

  114. Brosh R, Rotter V (2009) When mutants gain new powers: news from the mutant p53 field. Cancer (Phila) 9:701–713

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiji Inoue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inoue, K., Kurabayashi, A., Shuin, T. et al. Overexpression of p53 protein in human tumors. Med Mol Morphol 45, 115–123 (2012). https://doi.org/10.1007/s00795-012-0575-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00795-012-0575-6

Key words

Navigation