Skip to main content
Log in

Surface display of the thermophilic lipase Tm1350 on the spore of Bacillus subtilis by the CotB anchor protein

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Lipases expressed in microbial hosts have great commercial value, but their applications are restricted by the high costs of production and harsh conditions used in industrial processes, such as high temperature and alkaline environment. In this study, an Escherichia coliBacillus subtilis shuttle vector (pHS-cotB-Tm1350) was constructed for the spore surface display of the lipase Tm1350 from hyperthermophilic bacterium Thermotoga maritima MSB8. Successful display of the CotB-Tm1350 fusion protein on spore surface was confirmed by Western blot analysis and activity measurements. The optimal catalytic temperature and pH of the spore surface-displayed Tm1350 were 80 °C and 9, respectively, which were higher than non-immobilized Tm1350 (70 °C and pH 7.5). Analysis of thermal and pH stability showed that spore surface-displayed Tm1350 retained 81 or 70 % of its original activity after 8 h of incubation at pH 8 or pH 9 (70 °C), which were 18 % higher than the retained activity of the non-immobilized Tm1350 under the same conditions. Meanwhile, recycling experiments showed that the recombinant spores could be used for up to three reaction cycles without a significant decrease in the catalytic rate (84 %). These results suggested that enzyme display on the surface of the B. subtilis spore could serve as an effective approach for enzyme immobilization, which has potential applications in the harsh biochemical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdallah NH, Schlumpberger M, Gaffney DA, Hanrahan JP, Tobin JM, Magner E (2014) Comparison of mesoporous silicate supports for the immobilisation and activity of cytochrome c and lipase. J Mol Catal B Enzym 108:82–88

    Article  CAS  Google Scholar 

  • Chandrayan SK, Dhaunta N, Guptasarma P (2008) Expression, purification, refolding and characterization of a putative lysophospholipase from Pyrococcus furiosus: retention of structure and lipase/esterase activity in the presence of water-miscible organic solvents at high temperatures. Protein Expres Purif 59:327–333

    Article  CAS  Google Scholar 

  • Costas L, Bosio VE, Pandey A, Castro GR (2008) Effects of organic solvents on immobilized lipase in pectin microspheres. Appl Biochem Biotechnol 151:578–586

    Article  CAS  PubMed  Google Scholar 

  • Demirjian DC, Moris-Varas F, Cassidy CS (2001) Enzymes from extremophiles. Curr Opin Chem Biol 5:144–151

    Article  CAS  PubMed  Google Scholar 

  • Duc LH, Hong HA, Atkins HS, Flick-Smith HC, Durrani Z, Rijpkema S, Titball RW, Cutting SM (2007) Immunization against anthrax using Bacillus subtilis spores expressing the anthrax protective antigen. Vaccine 25:346–355

    Article  CAS  Google Scholar 

  • Gomes J, Steiner W (2004) The biocatalytic potential of extremophiles and extremozymes. Food Technol Biotech 42:223–235

    CAS  Google Scholar 

  • Green DH, Wakeley PR, Page A, Barnes A, Baccigalupi L, Ricca E, Cutting SM (1999) Characterization of two bacillus probiotics. Appl Environ Microbiol 65:4288–4291

    CAS  PubMed Central  PubMed  Google Scholar 

  • Henriques AO, Moran CP Jr (2000) Structure and assembly of the bacterial endospore coat. Methods 20:95–110

    Article  CAS  PubMed  Google Scholar 

  • Hinc K, Isticato R, Dembek M, Karczewska J, Iwanicki A, Peszynska-Sularz G, De Felice M, Obuchowski M, Ricca E (2010) Expression and display of urea of Helicobacter acinonychis on the surface of Bacillus subtilis spores. Microb Cell Fact 9:369–381

    Article  Google Scholar 

  • Imamura D, Kuwana R, Takamatsu H, Watabe K (2010) Localization of proteins to different layers and regions of Bacillus subtilis spore coats. J Bacteriol 192:518–524

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Isticato R, Cangiano G, Tran HT, Ciabattini A, Medaglini D, Oggioni MR, De Felice M, Pozzi G, Ricca E (2001) Surface display of recombinant proteins on Bacillus subtilis spores. J Bacteriol 183:6294–6301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim J, Schumann W (2009) Display of proteins on Bacillus subtilis endospores. Cell Mol Life Sci CMLS 66:3127–3136

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Lee CS, Kim BG (2005) Spore-displayed streptavidin: a live diagnostic tool in biotechnology. Biochem Biophys Res Commun 331:210–214

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Hahn M, Grabowski P, McPherson DC, Otte MM, Wang R, Ferguson CC, Eichenberger P, Driks A (2006) The Bacillus subtilis spore coat protein interaction network. Mol Microbiol 59:487–502

    Article  CAS  PubMed  Google Scholar 

  • Kwon SJ, Jung HC, Pan JG (2007) Transgalactosylation in a water-solvent biphasic reaction system with beta-galactosidase displayed on the surfaces of Bacillus subtilis spores. Appl Environ Microbiol 73:2251–2256

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Levisson M, van der Oost J, Kengen SW (2009) Carboxylic ester hydrolases from hyperthermophiles. Extremophiles 13:567–581

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Masomian M, Rahman RNZRA, Salleh AB, Basri M (2013) A new thermostable and organic solvent-tolerant lipase from Aneurinibacillus thermoaerophilus strain HZ. Process Biochem 48:169–175

    Article  CAS  Google Scholar 

  • Mauriello EMF, Duc LH, Isticato R, Cangiano G, Hong HYA, De Felice M, Ricca E, Cutting SM (2004) Display of heterologous antigens on the Bacillus subtilis spore coat using cotc as a fusion partner. Vaccine 22:1177–1187

    Article  CAS  PubMed  Google Scholar 

  • Miroliaei M, Nemat-Gorgani M (2002) Effect of organic solvents on stability and activity of two related alcohol dehydrogenases: a comparative study. Int J Biochem Cell B 34:169–175

    Article  CAS  Google Scholar 

  • Nicholson W, Setlow P (1990) Sporulation, germination and outgrowth. In: Harwood C, Cutting S (eds) Molecular biological methods for Bacillus. Wiley, Chichester, pp 391–450

    Google Scholar 

  • Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P (2000) Resistance of bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev 64:548–572

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Potot S, Serra CR, Henriques AO, Schyns G (2010) Display of recombinant proteins on Bacillus subtilis spores, using a coat-associated enzyme as the carrier. Appl Environ Microbiol 76:5926–5933

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qu YY, Wang JW, Zhang ZJ, Shi SN, Li DX, Shen WL, Shen E, Zhou JT (2014) Catalytic transformation of hodas using an efficient meta-cleavage product hydrolase-spore surface display system. J Mol Catal B Enzym 102:204–210

    Article  CAS  Google Scholar 

  • Roessl U, Nahalka J, Nidetzky B (2010) Carrier-free immobilized enzymes for biocatalysis. Biotechnol Lett 32:341–350

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory manual. Corporation for Supportive Housing, New York

    Google Scholar 

  • Snellman EA, Sullivan ER, Colwell RR (2002) Purification and properties of the extracellular lipase, lipa, of acinetobacter sp rag-1. Eur J Biochem 269:5771–5779

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Chang C, Yao Q, Li G, Qin L, Chen L, Chen K (2011) Display of Bombyx mori alcohol dehydrogenases on the Bacillus subtilis spore surface to enhance enzymatic activity under adverse conditions. PLoS One 6:e21454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang WF, Xu Y, Qin XL, Lan DM, Yang B, Wang YH (2014) Immobilization of lipase smg1 and its application in synthesis of partial glycerides. Eur J Lipid Sci Tech 116:1063–1069

    Article  CAS  Google Scholar 

  • Winkler UK, Stuckmann M (1979) Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. J Bacteriol 138:663–670

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wriggers W, Chakravarty S, Jennings PA (2005) Control of protein functional dynamics by peptide linkers. Biopolymers 80:736–746

    Article  CAS  PubMed  Google Scholar 

  • Xu XM, Gao C, Zhang XF, Che B, Ma CQ, Qiu JH, Tao F, Xu P (2011) Production of N-acetyl-d-neuraminic acid by use of an efficient spore surface display system. Appl Environ Microbiol 77:3197–3201

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang MM, Zhang WW, Zhang XF, Cen PL (2006) Construction and characterization of a novel maltose inducible expression vector in Bacillus subtilis. Biotechnol Lett 28:1713–1718

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Key Basic Research Program of China (973 Program, No. 2011CBA00800), the Open Funding Project of National Key Laboratory of Biochemical Engineering, and the Key Agriculture Support Project of Jiangsu Province, China (No. BE2013400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huayou Chen.

Additional information

Communicated by F. Robb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Tian, R., Ni, Z. et al. Surface display of the thermophilic lipase Tm1350 on the spore of Bacillus subtilis by the CotB anchor protein. Extremophiles 19, 799–808 (2015). https://doi.org/10.1007/s00792-015-0755-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-015-0755-0

Keywords

Navigation