Skip to main content
Log in

Structure of dimeric, recombinant Sulfolobus solfataricus phosphoribosyl diphosphate synthase: a bent dimer defining the adenine specificity of the substrate ATP

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The enzyme 5-phosphoribosyl-1-α-diphosphate (PRPP) synthase (EC 2.7.6.1) catalyses the Mg2+-dependent transfer of a diphosphoryl group from ATP to the C1 hydroxyl group of ribose 5-phosphate resulting in the production of PRPP and AMP. A nucleotide sequence specifying Sulfolobus solfataricus PRPP synthase was synthesised in vitro with optimised codon usage for expression in Escherichia coli. Following expression of the gene in E. coli PRPP synthase was purified by heat treatment and ammonium sulphate precipitation and the structure of S. solfataricus PRPP synthase was determined at 2.8 Å resolution. A bent dimer oligomerisation was revealed, which seems to be an abundant feature among PRPP synthases for defining the adenine specificity of the substrate ATP. Molecular replacement was used to determine the S. solfataricus PRPP synthase structure with a monomer subunit of Methanocaldococcus jannaschii PRPP synthase as a search model. The two amino acid sequences share 35 % identity. The resulting asymmetric unit consists of three separated dimers. The protein was co-crystallised in the presence of AMP and ribose 5-phosphate, but in the electron density map of the active site only AMP and a sulphate ion were observed. Sulphate ion, reminiscent of the ammonium sulphate precipitation step of the purification, seems to bind tightly and, therefore, presumably occupies and blocks the ribose 5-phosphate binding site. The activity of S. solfataricus PRPP synthase is independent of phosphate ion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

PRPP:

5-Phospho-d-ribosyl 1-α-diphosphate

References

  • Afonine PV, Grosse-Kunstleve RW, Adams PD (2005) The phenix refinement framework. CCP4 Newslett 42:8

    Google Scholar 

  • Alderwick LJ, Lloyd GS, Lloyd AJ, Lovering AL, Eggeling L, Besra GS (2011) Biochemical characterization of the Mycobacterium tuberculosis phosphoribosyl-1-pyrophosphate synthetase. Glycobiology 21:410–425. doi:10.1093/glycob/cwq173

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Arnvig K, Hove-Jensen B, Switzer RL (1990) Purification and properties of phosphoribosyl-diphosphate synthetase from Bacillus subtilis. Eur J Biochem 192:195–200

    Article  CAS  PubMed  Google Scholar 

  • Breda A, Martinelli LK, Bizarro CV, Rosado LA, Borges CB, Santos DS, Basso LA (2012) Wild-type phosphoribosylpyrophosphate synthase (PRS) from Mycobacterium tuberculosis: a bacterial class II PRS? PLoS One 7:e39245. doi:10.1371/journal.pone.0039245

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cherney MM, Cherney LT, Garen CR, James MN (2011) The structures of Thermoplasma volcanium phosphoribosyl pyrophosphate synthetase bound to ribose-5-phosphate and ATP analogs. J Mol Biol 413:844–856. doi:10.1016/j.jmb.2011.09.007

    Article  CAS  PubMed  Google Scholar 

  • Collaborative Computational Projekt Number 4 (1994) The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50:760–763

    Article  Google Scholar 

  • Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16:10881–10890

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132. doi:10.1107/S0907444904019158

    Article  PubMed  Google Scholar 

  • Eriksen TA, Kadziola A, Bentsen AK, Harlow KW, Larsen S (2000) Structural basis for the function of Bacillus subtilis phosphoribosyl-pyrophosphate synthetase. Nat Struct Biol 7:303–308. doi:10.1038/74069

    Article  CAS  PubMed  Google Scholar 

  • Eriksen TA, Kadziola A, Larsen S (2002) Binding of cations in Bacillus subtilis phosphoribosyldiphosphate synthetase and their role in catalysis. Protein Sci 11:271–279. doi:10.1110/ps.28502

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hove-Jensen B (1988) Mutation in the phosphoribosylpyrophosphate synthetase gene (prs) that results in simultaneous requirements for purine and pyrimidine nucleosides, nicotinamide nucleotide, histidine, and tryptophan in Escherichia coli. J Bacteriol 170:1148–1152

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hove-Jensen B (1989) Phosphoribosylpyrophosphate (PRPP)-less mutants of Escherichia coli. Mol Microbiol 3:1487–1492

    Article  CAS  PubMed  Google Scholar 

  • Hove-Jensen B, Maigaard M (1993) Escherichia coli rpiA gene encoding ribose phosphate isomerase A. J Bacteriol 175:5628–5635

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hove-Jensen B, Harlow KW, King CJ, Switzer RL (1986) Phosphoribosylpyrophosphate synthetase of Escherichia coli. Properties of the purified enzyme and primary structure of the prs gene. J Biol Chem 261:6765–6771

    CAS  PubMed  Google Scholar 

  • Huang H, Scherman MS, D’Haeze W, Vereecke D, Holsters M, Crick DC, McNeil MR (2005) Identification and active expression of the Mycobacterium tuberculosis gene encoding 5-phospho-α-d-ribose-1-diphosphate: decaprenyl-phosphate 5-phosphoribosyltransferase, the first enzyme committed to decaprenylphosphoryl-d-arabinose synthesis. J Biol Chem 280:24539–24543. doi:10.1074/jbc.M504068200

    Article  CAS  PubMed  Google Scholar 

  • Jensen KF, Houlberg U, Nygaard P (1979) Thin-layer chromatographic methods to isolate 32P-labeled 5-phosphoribosyl-α-1-pyrophosphate (PRPP): determination of cellular PRPP pools and assay of PRPP synthetase activity. Anal Biochem 98:254–263

    Article  CAS  PubMed  Google Scholar 

  • Jensen KF, Dandanell G, Hove-Jensen B, Willemoës M (2008) Chapter 3.6.2, Nucleotides, nucleosides, and nucleobases. ASM Press. Accessed 18 August

  • Kadziola A, Jepsen CH, Johansson E, McGuire J, Larsen S, Hove-Jensen B (2005) Novel class III phosphoribosyl diphosphate synthase: structure and properties of the tetrameric, phosphate-activated, non-allosterically inhibited enzyme from Methanocaldococcus jannaschii. J Mol Biol 354:815–828

    Article  CAS  PubMed  Google Scholar 

  • Kornberg A, Lieberman I, Simms ES (1955) Enzymatic synthesis and properties of 5-phosphoribosylpyrophosphate. J Biol Chem 215:389–402

    CAS  PubMed  Google Scholar 

  • Krath BN, Hove-Jensen B (1996) Bacillus caldolyticus prs gene encoding phosphoribosyl-diphosphate synthase. Gene 176:73–79

    Article  CAS  PubMed  Google Scholar 

  • Krath BN, Hove-Jensen B (1999) Organellar and cytosolic localization of four phosphoribosyl diphosphate synthase isozymes in spinach. Plant Physiol 119:497–506

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krath BN, Hove-Jensen B (2001a) Class II recombinant phosphoribosyl diphosphate synthase from spinach. Phosphate independence and diphosphoryl donor specificity. J Biol Chem 276:17851–17856

    Article  CAS  PubMed  Google Scholar 

  • Krath BN, Hove-Jensen B (2001b) Implications of secondary structure prediction and amino acid sequence comparison of class I and class II phosphoribosyl diphosphate synthases on catalysis, regulation, and quaternary structure. Protein Sci 10:2317–2324. doi:10.1110/ps.11801

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krath BN, Eriksen TA, Poulsen TS, Hove-Jensen B (1999) Cloning and sequencing of cDNAs specifying a novel class of phosphoribosyl diphosphate synthase in Arabidopsis thaliana. Biochim Biophys Acta 1430:403–408

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Li S, Lu Y, Peng B, Ding J (2007) Crystal structure of human phosphoribosylpyrophosphate synthetase 1 reveals a novel allosteric site. Biochem J 401:39–47. doi:10.1042/BJ20061066

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lieberman I, Kornberg A, Simms ES (1955) Enzymatic synthesis of pyrimidine nucleotides; orotidine-5′-phosphate and uridine-5′-phosphate. J Biol Chem 215:403–451

    CAS  PubMed  Google Scholar 

  • Lucarelli AP et al (2010) Mycobacterium tuberculosis phosphoribosylpyrophosphate synthetase: biochemical features of a crucial enzyme for mycobacterial cell wall biosynthesis. PLoS One 5:e15494. doi:10.1371/journal.pone.0015494

    Article  PubMed Central  PubMed  Google Scholar 

  • McCoy AJ, Grosse-Kunstleve RW, Storoni LC, Read RJ (2005) Likelihood-enhanced fast translation functions. Acta Crystallogr D Biol Crystallogr 61:458–464. doi:10.1107/S0907444905001617

    Article  PubMed  Google Scholar 

  • Newman J et al (2005) Towards rationalization of crystallization screening for small- to medium-sized academic laboratories: the PACT/JCSG+ strategy. Acta Crystallogr D Biol Crystallogr 61:1426–1431. doi:10.1107/S0907444905024984

    Article  PubMed  Google Scholar 

  • Nygaard FB (2001) The molecular mechanism of catalysis and allosteric regulation in the phosphoribosyldiphosphate synthase from Bacillus subtilis. Thesis, University of Copenhagen

  • Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276:307–326

    Article  CAS  Google Scholar 

  • Otwinowski Z, Minor W (2001) DENZO and SCALEPACK volume F: crystallography of biological macromolecules. International tables for crystallography. Springer, New York

    Google Scholar 

  • Rasche ME, White RH (1998) Mechanism for the enzymatic formation of 4-(β-d-ribofuranosyl)aminobenzene 5′-phosphate during the biosynthesis of methanopterin. Biochemistry 37:11343–11351. doi:10.1021/bi973086q

    Article  CAS  PubMed  Google Scholar 

  • Sharp PM, Li WH (1987) The codon adaptation index—a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 15:1281–1295

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smith PK et al (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  CAS  PubMed  Google Scholar 

  • Switzer RL (1969) Regulation and mechanism of phosphoribosylpyrophosphate synthetase. I. Purification and properties of the enzyme from Salmonella typhimurium. J Biol Chem 244:2854–2863

    CAS  PubMed  Google Scholar 

  • Taira M, Ishijima S, Kita K, Yamada K, Iizasa T, Tatibana M (1987) Nucleotide and deduced amino acid sequences of two distinct cDNAs for rat phosphoribosylpyrophosphate synthetase. J Biol Chem 262:14867–14870

    CAS  PubMed  Google Scholar 

  • White RH (1996) Biosynthesis of methanopterin. Biochemistry 35:3447–3456. doi:10.1021/bi952308m

    Article  CAS  PubMed  Google Scholar 

  • Willemoës M, Hove-Jensen B, Larsen S (2000) Steady state kinetic model for the binding of substrates and allosteric effectors to Escherichia coli phosphoribosyl-diphosphate synthase. J Biol Chem 275:35408–35412

    Article  PubMed  Google Scholar 

  • Xie G, Bonner CA, Jensen RA (2002) Dynamic diversity of the tryptophan pathway in chlamydiae: reductive evolution and a novel operon for tryptophan recapture. Genome Biol 3:research0051

Download references

Acknowledgments

We thank Qunxin She (University of Copenhagen) for kindly providing DNA of S. solfataricus, Tonny D. Hansen, Jens-Christian N. Poulsen and Dorthe Boelskifte for pertinent technical assistance. The MAXLAB and DANSCATT are gratefully acknowledged for providing the infrastructure facilitating collection of synchrotron data.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The experiments performed in this study comply with the current laws of Denmark.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bjarne Hove-Jensen or Anders Kadziola.

Additional information

Communicated by S. Albers.

The atomic coordinates and structure factors have been deposited in the Protein Data Bank (PDB code 4TWB), Research Collaboratory for Structural Bioinformatics, Rutgers University, New Brunswick, NJ (http://www.rcsb.org).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andersen, R.W., Leggio, L.L., Hove-Jensen, B. et al. Structure of dimeric, recombinant Sulfolobus solfataricus phosphoribosyl diphosphate synthase: a bent dimer defining the adenine specificity of the substrate ATP. Extremophiles 19, 407–415 (2015). https://doi.org/10.1007/s00792-014-0726-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-014-0726-x

Keywords

Navigation