Skip to main content

Advertisement

Log in

Community succession of bacteria and eukaryotes in dune ecosystems of Gurbantünggüt Desert, Northwest China

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Pyrosequencing and quantitative polymerase chain reaction of small subunit rRNA genes were used to provide a comprehensive examination of bacterial, cyanobacterial, and eukaryotic communities in the biological soil crusts (BSCs) of Gurbantünggüt Desert sand dunes (China). Three succession stages were recognized based on the analyses of eukaryotic communities: a late succession stage of BSCs in a swale with eukaryotes mainly related to the Bryophyta clade, an initial succession stage in a slope with barely any eukaryotic phototrophic microorganisms detected, and an intermediate succession type detected from both the swale and slope BSCs dominated by the phylum Chlorophyta. Moreover, the cyanobacterial community dominated all of the BSCs (48.2–69.5 % of the total bacteria) and differed among the three succession stages: sequences related to Microcoleus steenstrupii and the genus Scytonema were abundant in the later succession stage, whereas both the initial and intermediate stages were dominated by Microcoleus vaginatus. Compared with swales, BSCs from slopes are exposed to a harsher environment, e.g., higher irradiance and lower water availability, and thus may be restricted from developing to a higher succession stage. Other disturbances such as wind and grazing may explain the different succession stages observed in swales or slopes. However, no clear differences were detected from non-phototrophic bacterial communities of the three succession stages, and sequences related to Alphaproteobacteria and Actinobacteria were most abundant in all the BSCs. The closest matches for the most frequent non-phototrophic bacterial genera were mainly derived from harsh environments, indicating the robustness of these genera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BSCs:

Biological soil crusts

qPCR:

Quantitative polymerase chain reaction

References

  • Abed RMM et al (2008) Lipid biomarkers, pigments and cyanobacterial diversity of microbial mats across intertidal flats of the arid coast of the Arabian Gulf (Abu Dhabi, UAE). FEMS Microbiol Ecol 65:449–462

    Article  CAS  PubMed  Google Scholar 

  • Abed RMM, Al Kharusi S, Schramm A, Robinson MD (2010) Bacterial diversity, pigments and nitrogen fixation of biological desert crusts from the Sultanate of Oman. FEMS Microbiol Ecol 72:418–428

    Article  CAS  PubMed  Google Scholar 

  • Abed RMM, Ramette A, Hübner V, Deckker P, Beer D (2012) Microbial diversity of eolian dust sources from saline lake sediments and biological soil crusts in arid Southern Australia. FEMS Microbiol Ecol 80:294–304

    Article  CAS  PubMed  Google Scholar 

  • Bates ST, Nash TH III, Sweat KG, Garcia-Pichel F (2010) Fungal communities of lichen-dominated biological soil crusts: diversity, relative microbial biomass, and their relationship to disturbance and crust cover. J Arid Environ 74:1192–1199

    Article  Google Scholar 

  • Bates ST, Clemente JC, Flores GE, Walters WA, Parfrey LW, Knight R, Fierer N (2012) Global biogeography of highly diverse protistan communities in soil. ISME J 7:652–659

    Article  PubMed Central  PubMed  Google Scholar 

  • Belnap J (2002) Nitrogen fixation in biological soil crusts from southeast Utah, USA. Biol Fert Soils 35:128–135

    Article  CAS  Google Scholar 

  • Belnap J (2003) The world at your feet: desert biological soil crusts. Front Ecol Environ 1:181–189

    Article  Google Scholar 

  • Belnap J (2006) The potential roles of biological soil crusts in dryland hydrologic cycles. Hydrol Process 20:3159–3178

    Article  CAS  Google Scholar 

  • Belnap J, Gardner JS (1993) Soil microstructure in soils of the Colorado Plateau: the role of the cyanobacterium Microcoleus vaginatus. West N Am Naturalist 53:40–47

    Google Scholar 

  • Belnap J, Phillips SL, Miller ME (2004) Response of desert biological soil crusts to alterations in precipitation frequency. Oecologia 141:306–316

    Article  PubMed  Google Scholar 

  • Belnap J, Phillips SL, Flint S, Money J, Caldwell M (2008) Global change and biological soil crusts: effects of ultraviolet augmentation under altered precipitation regimes and nitrogen additions. Glob Change Biol 14:670–686

    Article  Google Scholar 

  • Bråte J, Logares R, Berney C, Ree DK, Klaveness D, Jakobsen KS, Shalchian-Tabrizi K (2010) Freshwater Perkinsea and marine–freshwater colonizations revealed by pyrosequencing and phylogeny of environmental rDNA. ISME J 4:1144–1153

    Article  PubMed  Google Scholar 

  • Bremner J, Mulvaney C (1982) Nitrogen—total. In: Page AL (ed) Methods of Soil American Society of Agronomy. Madison, Wl, pp 595–624

    Google Scholar 

  • Büdel B et al (2009) Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Microbiol Ecol 57:229–247

    Article  Google Scholar 

  • Chen LZ, Li DH, Song LR, Hu CX, Wang GH, Liu YD (2006) Effects of salt stress on carbohydrate metabolism in desert soil alga Microcoleus vaginatus Gom. J Integr Plant Biol 48:914–919

    Article  CAS  Google Scholar 

  • Csotonyi JT, Swiderski J, Stackebrandt E, Yurkov V (2010) A new environment for aerobic anoxygenic phototrophic bacteria: biological soil crusts. Environ Microbiol Rep 2:651–656

    Article  CAS  PubMed  Google Scholar 

  • Dunbar J et al (2012) Common bacterial responses in six ecosystems exposed to 10 years of elevated atmospheric carbon dioxide. Environ Microbiol 14:1145–1158

    Article  CAS  PubMed  Google Scholar 

  • Fan LL, Tang LS, Wu LF, Ma J, Li Y (2014) The limited role of snow water in the growth and development of ephemeral plants in a cold desert. J Veg Sci 25:681–690

    Article  Google Scholar 

  • Garcia-Pichel F, Belnap J (2001) Small-scale environments and distribution of biological soil crusts. In: Belnap J (ed) Biological soil crusts: structure, function, and management. Springer, Berlin Heidelberg, pp 193–201

    Chapter  Google Scholar 

  • Garcia-Pichel F, Lopez-Cortes A, Nubel U (2001) Phylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado Plateau. Appl Environ Microbiol 67:1902

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garcia-Pichel F, Loza V, Marusenko Y, Mateo P, Potrafka RM (2013) Temperature drives the continental-scale distribution of key microbes in topsoil communities. Sci 340:1574–1577

    Article  CAS  Google Scholar 

  • Gtari M et al (2012) Contrasted resistance of stone-dwelling Geodermatophilaceae species to stresses known to give rise to reactive oxygen species. FEMS Microbiol Ecol 80:566–577

    Article  CAS  PubMed  Google Scholar 

  • Gundlapally SR, Garcia-Pichel F (2006) The community and phylogenetic diversity of biological soil crusts in the Colorado Plateau studied by molecular fingerprinting and intensive cultivation. Microbiol Ecol 52:345–357

    Article  Google Scholar 

  • Hallmann C, Stannek L, Fritzlar D, Hause-Reitner D, Friedl T, Hoppert M (2013) Molecular diversity of phototrophic biofilms on building stone. FEMS Microbiol Ecol 84:355–372

    Article  CAS  PubMed  Google Scholar 

  • Housman D, Powers H, Collins A, Belnap J (2006) Carbon and nitrogen fixation differ between successional stages of biological soil crusts in the Colorado Plateau and Chihuahuan Desert. J Arid Environ 66:620–634

    Article  Google Scholar 

  • Hu C, Zhang D, Huang Z, Liu Y (2003) The vertical microdistribution of cyanobacteria and green algae within desert crusts and the development of the algal crusts. Plant Soil 257:97–111

    Article  CAS  Google Scholar 

  • Jacobs AFG, Heusinkveld BG, Berkowicz SM (2000) Dew measurements along a longitudinal sand dune transect, Negev Desert, Israel. Int J Biometeorol 43:184–190

    Article  CAS  PubMed  Google Scholar 

  • Joe MM, Saravanan VS, Sa TM (2013) Aggregation of selected plant growth promoting Methylobacterium strains: role of cell surface components and hydrophobicity. Arch Microbiol 195:219–225

    Article  CAS  PubMed  Google Scholar 

  • Karsten U, Friedl T, Schumann R, Hoyer K, Lembcke S (2005) Mycosporine-like amino acids and phylogenies in green algae: Prasiola and its relatives from the Trebouxiophyceae (Chlorophyta). J Phycol 41:557–566

    Article  CAS  Google Scholar 

  • Karsten U, Lütz C, Holzinger A (2010) Ecophysiological performance of the aeroterrestrial green alga klebsormidium crenulatum (Charophyceae, Streptophyta) isolated from an alpine soil crust with an emphasis on desiccation stress. J Phycol 46:1187–1197

    Article  Google Scholar 

  • Kidron GJ, Vonshak A, Dor I, Barinova S, Abeliovich A (2010) Properties and spatial distribution of microbiotic crusts in the Negev Desert, Israel. Catena 82:92–101

    Article  CAS  Google Scholar 

  • Lan SB, Wu L, Zhang D, Hu CX, Liu Y (2010) Ethanol outperforms multiple solvents in the extraction of chlorophyll-a from biological soil crusts. Soil Biol Biochem 43:857–861

    Article  Google Scholar 

  • Lan SB, Wu L, Zhang DL, Hu CX (2013) Assessing level of development and successional stages in biological soil crusts with biological indicators. Microbiol Ecol 66:394–403

    Article  CAS  Google Scholar 

  • Lane D (1991) 16S/23S rRNA sequencing. In: Stackebrandt E (ed) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–147

    Google Scholar 

  • Lange O, Kidron G, Budel B, Meyer A, Kilian E, Abeliovich A (1992) Taxonomic composition and photosynthetic characteristics of thebiological soil crusts’ covering sand dunes in the western Negev Desert. Funct Ecol 6:519–527

    Article  Google Scholar 

  • Langhans TM, Storm C, Schwabe A (2009) Community assembly of biological soil crusts of different successional stages in a temperate sand ecosystem, as assessed by direct determination and enrichment techniques. Microbiol Ecol 58:394–407

    Article  Google Scholar 

  • Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:5111–5120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li K, Liu RY, Zhang HX, Yun JL (2013) The diversity and abundance of bacteria and oxygenic phototrophs in saline biological desert crusts in Xinjiang, Northwest China. Microbiol Ecol 66:40–48

    Article  CAS  Google Scholar 

  • Meadow JF, Zabinski CA (2012) Spatial heterogeneity of eukaryotic microbial communities in an unstudied geothermal diatomaceous biological soil crust: Yellowstone National Park, WY, USA. FEMS Microbiol Ecol 82:182–191

    Article  CAS  PubMed  Google Scholar 

  • Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nagy ML, Perez A, Garcia-Pichel F (2005) The prokaryotic diversity of biological soil crusts in the Sonoran Desert (Organ Pipe Cactus National Monument, AZ). FEMS Microbiol Ecol 54:233–245

    Article  CAS  PubMed  Google Scholar 

  • Nubel U, Garcia-Pichel F, Muyzer G (1997) PCR primers to amplify 16S rRNA genes from cyanobacteria. FEMS Microbiol Ecol 63:3327–3332

    CAS  Google Scholar 

  • Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acid Res 35:7188–7196

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rivera-Aguilar V, Godinez-Alvarez H, Manuell-Cacheux I, Rodriguez-Zaragoza S (2005) Physical effects of biological soil crusts on seed germination of two desert plants under laboratory conditions. J Arid Environ 63:344–352

    Article  Google Scholar 

  • Schloss PD, Westcott SL (2011) Assessing and improving methods used in operational taxonomic unit-based approaches for 16S rRNA gene sequence analysis. Appl Environ Microbiol 77:3219–3226

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS ONE 6:e27310

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schumacher BA (2002) Methods for the determination of total organic carbon (TOC) in soils and sediments. Office of research and development, Las Vegas

    Google Scholar 

  • Song J, Feng G, Tian C-Y, Zhang F-S (2006) Osmotic adjustment traits of Suaeda physophor, Haloxylon ammodendron and Haloxylon persicum in field or controlled conditions. Plant Sci 170:113–119

    Article  CAS  Google Scholar 

  • Steven B, Lionard M, Kuske CR, Vincent WF (2013) High bacterial diversity of biological soil crusts in water tracks over permafrost in the high Arctic Polar Desert. PLoS ONE 8:e71489

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Warren-Rhodes KA et al (2007) Cyanobacterial ecology across environmental gradients and spatial scales in China’s hot and cold deserts. FEMS Microbiol Ecol 61:470–482

    Article  CAS  PubMed  Google Scholar 

  • Weon HY, Son JA, Yoo SH, Hong SB, Jeon YA, Kwon SW, Koo BS (2009) Rubellimicrobium aerolatum sp nov., isolated from an air sample in Korea. Int J Syst Evol Microbiol 59:406–410

    Article  CAS  PubMed  Google Scholar 

  • Wu N, Zhang Y, Downing A (2009) Comparative study of nitrogenase activity in different types of biological soil crusts in the Gurbantunggut Desert, Northwestern China. J Arid Environ 73:828–833

    Article  Google Scholar 

  • Zhang YM, Chen J, Wang L, Wang X, Gu Z (2007) The spatial distribution patterns of biological soil crusts in the Gurbantunggut Desert, Northern Xinjiang, China. J Arid Environ 68:599–610

    Article  Google Scholar 

  • Zhang J, Zhang YM, Downing A, Cheng JH, Zhou XB, Zhang BC (2009) The influence of biological soil crusts on dew deposition in Gurbantunggut Desert, Northwestern China. J Hydrol 379:220–228

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the research project of the Chinese Academy of Sciences (XDA05030500). We thank all the staff at FuKang station of desert ecology (Xinjiang institute of ecology and geography, CAS) for their help in field sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxun Zhang.

Additional information

Communicated by M. da Costa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1752 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Bai, Z. & Zhang, H. Community succession of bacteria and eukaryotes in dune ecosystems of Gurbantünggüt Desert, Northwest China. Extremophiles 19, 171–181 (2015). https://doi.org/10.1007/s00792-014-0696-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-014-0696-z

Keywords

Navigation