Skip to main content

Advertisement

Log in

Deletion of cdvB paralogous genes of Sulfolobus acidocaldarius impairs cell division

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The majority of Crenarchaeota utilize the cell division system (Cdv) to divide. This system consists of three highly conserved genes, cdvA, cdvB and cdvC that are organized in an operon. CdvC is homologous to the AAA-type ATPase Vps4, involved in multivesicular body biogenesis in eukaryotes. CdvA is a unique archaeal protein that interacts with the membrane, while CdvB is homologous to the eukaryal Vps24 and forms helical filaments. Most Crenarcheota contain additional CdvB paralogs. In Sulfolobus acidocaldarius these are termed CdvB1–3. We have used a gene inactivation approach to determine the impact of these additional cdvB genes on cell division. Independent deletion mutants of these genes were analyzed for growth and protein localization. One of the deletion strains (ΔcdvB3) showed a severe growth defect on plates and delayed growth on liquid medium. It showed the formation of enlarged cells and a defect in DNA segregation. Since these defects are accompanied with an aberrant localization of CdvA and CdvB, we conclude that CdvB3 fulfills an important accessory role in cell division.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Babst M, Wendland B, Estepa EJ, Emr SD (1998) The Vps4p AAA ATPase regulates membrane association of a vps protein complex required for normal endosome function. EMBO J 17:2982–2993

    Article  CAS  PubMed  Google Scholar 

  • Brock TD, Brock KM, Belly RT, Weiss RL (1972) Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Archiv Fur Mikrobiologie 84:54–68

    Article  CAS  PubMed  Google Scholar 

  • Carlton J (2010) The ESCRT machinery: a cellular apparatus for sorting and scission. Biochem Soc Trans 38:1397–1412

    Article  CAS  PubMed  Google Scholar 

  • Carlton JG, Martin-Serrano J (2007) Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery. Science 316:1908–1912

    Article  CAS  PubMed  Google Scholar 

  • Dobro MJ et al (2013) Electron cryotomography of ESCRT assemblies and dividing Sulfolobus cells suggests that spiraling filaments are involved in membrane scission. Mol Biol Cell 24:2319–2327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ellen AF et al (2009) Proteomic analysis of secreted membrane vesicles of archaeal Sulfolobus species reveals the presence of endosome sorting complex components. Extremophiles 13:67–79

    Article  CAS  PubMed  Google Scholar 

  • Ellen AF, Albers SV, Driessen AJ (2010) Comparative study of the extracellular proteome of Sulfolobus species reveals limited secretion. Extremophiles 14:87–98

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ellen AF, Rohulya OV, Fusetti F, Wagner M, Albers SV, Driessen AJ (2011) The sulfolobicin genes of Sulfolobus acidocaldarius encode novel antimicrobial proteins. J Bacteriol 193:4380–4387

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ettema TJ, Bernander R (2009) Cell division and the ESCRT complex: a surprise from the archaea. Commun Integr Biol 2:86–88

    CAS  PubMed  Google Scholar 

  • Ettema TJ, Lindas AC, Bernander R (2011) An actin-based cytoskeleton in archaea. Mol Microbiol 80:1052–1061

    Article  CAS  PubMed  Google Scholar 

  • Gotz D, Paytubi S, Munro S, Lundgren M, Bernander R, White MF (2007) Responses of hyperthermophilic crenarchaea to UV irradiation. Genome Biol 8:R220

    Article  PubMed Central  PubMed  Google Scholar 

  • Henne WM, Buchkovich NJ, Emr SD (2011) The ESCRT pathway. Dev Cell 21:77–91

    Article  CAS  PubMed  Google Scholar 

  • Hobel CF, Albers SV, Driessen AJ, Lupas AN (2008) The Sulfolobus solfataricus AAA protein Sso0909, a homologue of the eukaryotic ESCRT Vps4 ATPase. Biochem Soc Trans 36:94–98

    Article  CAS  PubMed  Google Scholar 

  • Hurley JH (2008) ESCRT complexes and the biogenesis of multivesicular bodies. Curr Opin Cell Biol 20:4–11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hurley JH, Hanson PI (2010) Membrane budding and scission by the ESCRT machinery: it’s all in the neck. Nat Rev Mol Cell Biol 11:556–566

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kieffer C et al (2008) Two distinct modes of ESCRT-III recognition are required for VPS4 functions in lysosomal protein targeting and HIV-1 budding. Dev Cell 15:62–73

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li Z, Blissard GW (2012) Cellular VPS4 is required for efficient entry and egress of budded virions of Autographa californica multiple nucleopolyhedrovirus. J Virol 86:459–472

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lindas AC, Bernander R (2013) The cell cycle of archaea. Nat Rev Microbiol 11:627–638

    Article  CAS  PubMed  Google Scholar 

  • Lindas AC, Karlsson EA, Lindgren MT, Ettema TJ, Bernander R (2008) A unique cell division machinery in the archaea. Proc Natl Acad Sci USA 105:18942–18946

    Article  CAS  PubMed  Google Scholar 

  • Lowe J, Amos LA (1998) Crystal structure of the bacterial cell-division protein FtsZ. Nature 391:203–206

    Article  CAS  PubMed  Google Scholar 

  • Maaty WS et al (2006) Characterization of the archaeal thermophile Sulfolobus turreted icosahedral virus validates an evolutionary link among double-stranded DNA viruses from all domains of life. J Virol 80:7625–7635

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Makarova KS, Koonin EV (2010) Two new families of the FtsZ-tubulin protein superfamily implicated in membrane remodeling in diverse bacteria and archaea. Biol Direct 5:33

    Article  Google Scholar 

  • Makarova KS, Yutin N, Bell SD, Koonin EV (2010) Evolution of diverse cell division and vesicle formation systems in archaea. Nat Rev Microbiol 8:731–741

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moriscot C et al (2011) Crenarchaeal CdvA forms double-helical filaments containing DNA and interacts with ESCRT-III-like CdvB. PLoS One 6:e21921

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morita E, Sundquist WI (2004) Retrovirus budding. Annu Rev Cell Dev Biol 20:395–425

    Article  CAS  PubMed  Google Scholar 

  • Morita E et al (2007) Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. EMBO J 26:4215–4227

    Article  CAS  PubMed  Google Scholar 

  • Morita E, Colf LA, Karren MA, Sandrin V, Rodesch CK, Sundquist WI (2010) Human ESCRT-III and VPS4 proteins are required for centrosome and spindle maintenance. Proc Natl Acad Sci USA 107:12889–12894

    Article  CAS  PubMed  Google Scholar 

  • Nunoura T et al (2011) Insights into the evolution of archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group. Nucleic Acids Res 39:3204–3223

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Obita T et al (2007) Structural basis for selective recognition of ESCRT-III by the AAA ATPase Vps4. Nature 449:735–739

    Article  CAS  PubMed  Google Scholar 

  • Ortmann AC et al (2008) Transcriptome analysis of infection of the archaeon Sulfolobus solfataricus with Sulfolobus turreted icosahedral virus. J Virol 82:4874–4883

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peel S, Macheboeuf P, Martinelli N, Weissenhorn W (2011) Divergent pathways lead to ESCRT-III-catalyzed membrane fission. Trends Biochem Sci 36:199–210

    Article  CAS  PubMed  Google Scholar 

  • Poplawski A, Gullbrand B, Bernander R (2000) The ftsZ gene of Haloferax mediterranei: sequence, conserved gene order, and visualization of the FtsZ ring. Gene 242:357–367

    Article  CAS  PubMed  Google Scholar 

  • Raiborg C, Stenmark H (2009) The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458:445–452

    Article  CAS  PubMed  Google Scholar 

  • Reilly MS, Grogan DW (2001) Characterization of intragenic recombination in a hyperthermophilic archaeon via conjugational DNA exchange. J Bacteriol 183:2943–2946

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saksena S, Sun J, Chu T, Emr SD (2007) ESCRTing proteins in the endocytic pathway. Trends Biochem Sci 32:561–573

    Article  CAS  PubMed  Google Scholar 

  • Samson RY, Obita T, Freund SM, Williams RL, Bell SD (2008) A role for the ESCRT system in cell division in archaea. Science 322:1710–1713

    Article  CAS  PubMed  Google Scholar 

  • Samson RY et al (2011) Molecular and structural basis of ESCRT-III recruitment to membranes during archaeal cell division. Mol Cell 41:186–196

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Snyder JC, Samson RY, Brumfield SK, Bell SD, Young MJ (2013) Functional interplay between a virus and the ESCRT machinery in Archaea. PNAS 110:10783–10787

    Article  CAS  PubMed  Google Scholar 

  • Stuchell-Brereton MD, Skalicky JJ, Kieffer C, Karren MA, Ghaffarian S, Sundquist WI (2007) ESCRT-III recognition by VPS4 ATPases. Nature 449:740–744

    Article  CAS  PubMed  Google Scholar 

  • Wagner M, Berkner S, Ajon M, Driessen AJ, Lipps G, Albers SV (2009) Expanding and understanding the genetic toolbox of the hyperthermophilic genus Sulfolobus. Biochem Soc Trans 37:97–101

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Lutkenhaus J (1996) FtsZ ring: the eubacterial division apparatus conserved in archaebacteria. Mol Microbiol 21:313–319

    Article  CAS  PubMed  Google Scholar 

  • Williams RL, Urbe S (2007) The emerging shape of the ESCRT machinery. Nat Rev Mol Cell Biol 8:355–368

    Article  CAS  PubMed  Google Scholar 

  • Wollert T, Yang D, Ren X, Lee HH, Im YJ, Hurley JH (2009) The ESCRT machinery at a glance. J Cell Sci 122:2163–2166

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks to Dirk-Jan Scheffers for help with the fluorescence microscopy, and Maarten Mols for assistance in the flow cytometry. We are grateful to Ralf Bernander (Stockholm University, Sweden) for kindly providing the Cdv antibodies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnold J. M. Driessen.

Additional information

Communicated by L. Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, N., Driessen, A.J.M. Deletion of cdvB paralogous genes of Sulfolobus acidocaldarius impairs cell division. Extremophiles 18, 331–339 (2014). https://doi.org/10.1007/s00792-013-0618-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-013-0618-5

Keywords

Navigation