Skip to main content
Log in

l-Arabinose degradation pathway in the haloarchaeon Haloferax volcanii involves a novel type of l-arabinose dehydrogenase

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The pathway of l-arabinose degradation was studied in the haloarchaeon Haloferax volcanii. It is shown that l-arabinose is oxidatively degraded to α-ketoglutarate. During growth on l-arabinose, l-arabinose dehydrogenase (l-AraDH) was induced. The enzyme was purified as a 130 kDa homotetrameric protein catalyzing the oxidation of l-arabinose with both NADP+ and NAD+. The gene encoding l-AraDH was identified as HVO_B0032 and recombinant l-AraDH showed similar properties as the native enzyme. The l-AraDH deletion mutant did not grow on l-arabinose, but grew unaffected on glucose and d-xylose, indicating a specific involvement in l-arabinose degradation. Phylogenetic analyses attribute the first archaeal l-AraDH to the extended short-chain dehydrogenase/reductase (SDRe) family, where it is part of a novel cluster and thus differs from known archaeal and bacterial pentose dehydrogenases. Further, cell extracts of H. volcanii catalyzed the NADP+-dependent conversion of l-arabinoate to α-ketoglutarate. The genes involved in that conversion were identified by analyses of transcripts and deletion mutants as HVO_B0038A, HVO_B0027 and HVO_B0039 recently reported to be involved in d-xylonate conversion to α-ketoglutarate in H. volcanii (Johnsen et al. 2009).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allers T, Ngo HP, Mevarech M, Lloyd RG (2004) Development of additional selectable markers for the halophilic archaeon Haloferax volcanii based on the leuB and trpA genes. Appl Environ Microbiol 70:943–953

    Article  PubMed  CAS  Google Scholar 

  • Alphey MS, Burton A, Urbaniak MD, Boons GJ, Ferguson MA, Hunter WN (2006) Trypanosoma brucei UDP-galactose-4′-epimerase in ternary complex with NAD+ and the substrate analogue UDP-4-deoxy-4-fluoro-alpha-d-galactose. Acta Crystallogr Sect F Struct Biol Cryst Commun 62:829–834

    Article  PubMed  CAS  Google Scholar 

  • Amako K, Fujita K, Shimohata TA, Hasegawa E, Kishimoto R, Goda K (2006) NAD+-specific d-arabinose dehydrogenase and its contribution to erythroascorbic acid production in Saccharomyces cerevisiae. FEBS Lett 580:6428–6434

    Article  PubMed  CAS  Google Scholar 

  • Asada Y et al (2009) Biochemical and structural characterization of a short-chain dehydrogenase/reductase of Thermus thermophilus HB8: a hyperthermostable aldose-1-dehydrogenase with broad substrate specificity. Chem Biol Interact 178:117–126

    Article  PubMed  CAS  Google Scholar 

  • Baroja-Mazo A et al (2005) Characterisation and biosynthesis of d-erythroascorbic acid in Phycomyces blakesleeanus. Fungal Genet Biol 42:390–402

    Article  PubMed  CAS  Google Scholar 

  • Bitan-Banin G, Ortenberg R, Mevarech M (2003) Development of a gene knockout system for the halophilic archaeon Haloferax volcanii by use of the pyrE gene. J Bacteriol 185:772–778

    Article  PubMed  CAS  Google Scholar 

  • Brenneis M, Hering O, Lange C, Soppa J (2007) Experimental characterization of Cis-acting elements important for translation and transcription in halophilic archaea. PLoS Genet 3:e229

    Google Scholar 

  • Brouns SJ et al (2006) Identification of the missing links in prokaryotic pentose oxidation pathways: evidence for enzyme recruitment. J Biol Chem 281:27378–27388

    Article  PubMed  CAS  Google Scholar 

  • Brückner J (1955) Estimation of monosaccharides by the orcinol-sulphuric acid reaction. Biochem J 60:200–205

    PubMed  Google Scholar 

  • Chen YW, Dekker EE, Somerville RL (1995) Functional analysis of E. coli threonine dehydrogenase by means of mutant isolation and characterization. Biochim Biophys Acta 1253:208–214

    Article  PubMed  Google Scholar 

  • Chomczynski P, Mackey K (1995) Substitution of chloroform by bromo-chloropropane in the single-step method of RNA isolation. Anal Biochem 225:163–164

    Article  PubMed  CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  • Dambeck M, Soppa J (2008) Characterization of a Haloferax volcanii member of the enolase superfamily: deletion mutant construction, expression analysis, and transcriptome comparison. Arch Microbiol 190:341–353

    Article  PubMed  CAS  Google Scholar 

  • Danner S, Soppa J (1996) Characterization of the distal promoter element of halobacteria in vivo using saturation mutagenesis and selection. Mol Microbiol 19:1265–1276

    Article  PubMed  CAS  Google Scholar 

  • Hammelmann M, Soppa J (2008) Optimized generation of vectors for the construction of Haloferax volcanii deletion mutants. J Microbiol Methods 75:201–204

    Article  PubMed  CAS  Google Scholar 

  • Johnsen U et al (2009) d-xylose degradation pathway in the halophilic archaeon Haloferax volcanii. J Biol Chem 284:27290–27303

    Article  PubMed  CAS  Google Scholar 

  • Kallberg Y, Oppermann U, Persson B (2010) Classification of the short-chain dehydrogenase/reductase superfamily using hidden Markov models. FEBS J 277:2375–2386

    Article  PubMed  CAS  Google Scholar 

  • Kao YC, Davis L (1994) Purification and structural characterization of porcine l-threonine dehydrogenase. Protein Expr Purif 5:423–431

    Article  PubMed  CAS  Google Scholar 

  • Kavanagh KL, Jörnvall H, Persson B, Oppermann U (2008) Medium- and short-chain dehydrogenase/reductase gene and protein families: the SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes. Cell Mol Life Sci 65:3895–3906

    Article  PubMed  CAS  Google Scholar 

  • Kim ST, Huh WK, Kim JY, Hwang SW, Kang SO (1996) d-arabinose dehydrogenase and biosynthesis of erythroascorbic acid in Candida albicans. Biochim Biophys Acta 1297:1–8

    Article  PubMed  Google Scholar 

  • Kuhn J, Binder S (2002) RT-PCR analysis of 5′ to 3′-end-ligated mRNAs identifies the extremities of cox2 transcripts in pea mitochondria. Nucleic Acids Res 30:439–446

    Article  PubMed  CAS  Google Scholar 

  • Marchler-Bauer A et al (2011) CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res 39:D225–D229. doi:10.1093/nar/gkq1189

    Article  PubMed  CAS  Google Scholar 

  • Meyer C, Schmid R, Scriba PC, Wehling M (1996) Purification and partial sequencing of high-affinity progesterone- binding site(s) from porcine liver membranes. Eur J Biochem 239:726–731

    Article  PubMed  CAS  Google Scholar 

  • Persson B, Kallberg Y, Oppermann U, Jornvall H (2003) Coenzyme-based functional assignments of short-chain dehydrogenases/reductases (SDRs). Chem Biol Interact 143–144:271–278

    Article  PubMed  Google Scholar 

  • Pickl A, Johnsen U, Schonheit P (2012) Fructose degradation in the haloarchaeon Haloferax volcanii involves a bacterial type phosphoenolpyruvate-dependent phosphotransferase system, fructose-1-phosphate kinase, and class II fructose-1,6-bisphosphate aldolase. J Bacteriol 194:3088–3097. doi:10.1128/JB.00200-12

    Article  PubMed  CAS  Google Scholar 

  • Sakuraba H, Kawai T, Yoneda K, Ohshima T (2011) Crystal structure of UDP-galactose 4-epimerase from the hyperthermophilic archaeon Pyrobaculum calidifontis. Arch Biochem Biophys 512:126–134

    Article  PubMed  CAS  Google Scholar 

  • Sambrook S, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual, 2 edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

  • Slupska MM, King AG, Fitz-Gibbon S, Besemer J, Borodovsky M, Miller JH (2001) Leaderless transcripts of the crenarchaeal hyperthermophile Pyrobaculum aerophilum. J Mol Biol 309:347–360

    Article  PubMed  CAS  Google Scholar 

  • Stephens C, Christen B, Fuchs T, Sundaram V, Watanabe K, Jenal U (2007) Genetic analysis of a novel pathway for d-xylose metabolism in Caulobacter crescentus. J Bacteriol 189:2181–2185

    Article  PubMed  CAS  Google Scholar 

  • Talaat AM, Lyons R, Howard ST, Johnston SA (2004) The temporal expression profile of Mycobacterium tuberculosis infection in mice. Proc Natl Acad Sci USA 101:4602–4607. doi:10.1073/pnas.0306023101

    Article  PubMed  CAS  Google Scholar 

  • Thoden JB, Frey PA, Holden HM (1996) Molecular structure of the NADH/UDP-glucose abortive complex of UDP-galactose 4-epimerase from Escherichia coli: implications for the catalytic mechanism. Biochemistry 35:5137–5144

    Article  PubMed  CAS  Google Scholar 

  • Thoden JB, Wohlers TM, Fridovich-Keil JL, Holden HM (2000) Crystallographic evidence for Tyr 157 functioning as the active site base in human UDP-galactose 4-epimerase. Biochemistry 39:5691–5701

    Article  PubMed  CAS  Google Scholar 

  • van de Werken HJ, Brouns SJ, Van der Oost J (2008) Pentose metabolism in archaea. In: Blum P (ed) Archaea. New models for prokaryotic biology. Caister Academic Press, Norfolk, pp 71–94

    Google Scholar 

  • Wagner M, Andreesen JR (1995) Purification and characterization of threonine dehydrogenase from Clostridium sticklandii. Arch Microbiol 163:286–290

    Article  PubMed  CAS  Google Scholar 

  • Wanner C, Soppa J (2002) Functional role for a 2-oxo acid dehydrogenase in the halophilic archaeon Haloferax volcanii. J Bacteriol 184:3114–3121

    Article  PubMed  CAS  Google Scholar 

  • Watanabe S, Kodak T, Makino K (2006) Cloning, expression, and characterization of bacterial l-arabinose 1-dehydrogenase involved in an alternative pathway of l-arabinose metabolism. J Biol Chem 281:2612–2623

    Article  PubMed  CAS  Google Scholar 

  • Weissbach A, Hurwitz J (1959) The formation of 2-keto-3-deoxyheptonic acid in extracts of Escherichia coli B. I. Identification. J Biol Chem 234:705–709

    PubMed  CAS  Google Scholar 

  • Yoneda K, Sakuraba H, Muraoka I, Oikawa T, Ohshima T (2010) Crystal structure of UDP-galactose 4-epimerase-like l-threonine dehydrogenase belonging to the intermediate short-chain dehydrogenase-reductase superfamily. FEBS J 277:5124–5132

    Article  PubMed  CAS  Google Scholar 

  • Yoneda K, Sakuraba H, Araki T, Ohshima T (2012) Crystal structure of binary and ternary complexes of archaeal UDP-galactose 4-epimerase-like l-threonine dehydrogenase from Thermoplasma volcanium. J Biol Chem 287:12966–12974

    Article  PubMed  CAS  Google Scholar 

  • Zaigler A, Schuster SC, Soppa J (2003) Construction and usage of a onefold-coverage shotgun DNA microarray to characterize the metabolism of the archaeon Haloferax volcanii. Mol Microbiol 48:1089–1105

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Roland Schmid (Osnabrück, Germany) for performing N-terminal amino acid sequencing. Thanks are also due to Jörg Soppa (Frankfurt, Germany) for providing the plasmid pSD1 and for supporting to establish the method for 5′-end and 3′-end determination of transcripts in our lab. This work was supported by grants of the Deutsche Forschungsgemeinschaft (SCHO 316/11-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Schönheit.

Additional information

Communicated by L. Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOCX 440 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnsen, U., Sutter, JM., Zaiß, H. et al. l-Arabinose degradation pathway in the haloarchaeon Haloferax volcanii involves a novel type of l-arabinose dehydrogenase. Extremophiles 17, 897–909 (2013). https://doi.org/10.1007/s00792-013-0572-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-013-0572-2

Keywords

Navigation