Skip to main content

Advertisement

Log in

Effects of intracellular Mn on the radiation resistance of the halophilic archaeon Halobacterium salinarum

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Ionizing radiation (IR) is of particular interest in biology because its exposure results in severe oxidative stress to the cell’s macromolecules. Our recent work with extremophiles supports the idea that IR resistance is most likely achieved by a metabolic route, effected by manganese (Mn) antioxidants. Biochemical analysis of “super-IR resistant” mutants of H. salinarum, evolved over multiple cycles of exposure to high doses of IR, confirmed the key role for Mn antioxidants in the IR resistance of this organism. Analysis of the proteome of H. salinarum “super-IR resistant” mutants revealed increased expression for proteins involved in energy metabolism, replenishing the cell with reducing equivalents depleted by the oxidative stress inflicted by IR. Maintenance of redox homeostasis was also activated by the over-expression of coenzyme biosynthesis pathways involved in redox reactions. We propose that in H. salinarum, increased tolerance to IR is a combination of metabolic regulatory adjustments and the accumulation of Mn-antioxidant complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Al-Maghrebi M, Fridovich I, Benov L (2002) Manganese supplementation relieves the phenotypic deficits seen in superoxide-dismutase-null Escherichia coli. Arch Biochem Biophys 402:104–109

    Article  PubMed  CAS  Google Scholar 

  • Archibald FS, Fridovich I (1982) Investigations of the state of the manganese in Lactobacillus plantarum. Arch Biochem Biophys 215:589–596

    Article  PubMed  CAS  Google Scholar 

  • Baliga NS, Bjork SJ, Bonneau R, Pan M, Iloanusi C, Kottemann MC, Hood L, DiRuggiero J (2004) Systems level insights into the stress response to UV radiation in the halophilic archaeon Halobacterium NRC-1. Genome Res 14:1025–1035

    Article  PubMed  CAS  Google Scholar 

  • Barnese K, Gralla EB, Cabelli DE, Valentine JS (2008) Manganous phosphate acts as a superoxide dismutase. J Am Chem Soc 130:4604–4606

    Article  PubMed  CAS  Google Scholar 

  • Billi D, Friedmann EI, Hofer KG, Grilli Caiola M, Ocampo-Friedmann R (2000) Ionizing-radiation resistance in the desiccation-tolerant cyanobacterium Chroococcidiopsis. Appl Environ Microbiol 66:1489–1492

    Article  PubMed  CAS  Google Scholar 

  • Bonneau R, Facciotti MT, Reiss DJ, Schmid AK, Pan M, Kaur A, Thorsson V, Shannon P, Johnson MH, Bare JC, Longabaugh W, Vuthoori M, Whitehead K, Madar A, Suzuki L, Mori T, Chang DE, Diruggiero J, Johnson CH, Hood L, Baliga NS (2007) A predictive model for transcriptional control of physiology in a free living cell. Cell 131:1354–1365

    Article  PubMed  CAS  Google Scholar 

  • Celis RT (1990) Mutant of Escherichia coli K-12 with defective phosphorylation of two periplasmic transport proteins. J Biol Chem 265:1787–1793

    PubMed  CAS  Google Scholar 

  • Chang EC, Kosman DJ (1989) Intracellular Mn(II)-associated superoxide scavenging activity protects Cu, Zn superoxide dismutase-deficient Saccharomyces cerevisiae against dioxygen stress. J Biol Chem 264:12172–12178

    PubMed  CAS  Google Scholar 

  • Chu LJ, Chen MC, Setter J, Tsai YS, Yang H, Fang X, Ting YS, Shaffer SA, Taylor GK, von Haller PD, Goodlett DR, Ng WV (2011) New structural proteins of Halobacterium salinarum gas vesicle revealed by comparative proteomics analysis. J Proteome Res 10:1170

    Article  PubMed  CAS  Google Scholar 

  • Confalonieri F, Sommer S (2011) Bacterial and archaeal resistance to ionizing radiation. J Phys Conf Series 261. doi:10.1088/1742-6596/1261/1081/012005

  • Daly MJ (2009) A new perspective on radiation resistance based on Deinococcus radiodurans. Nat Rev Microbiol 7:237–245

    Article  PubMed  CAS  Google Scholar 

  • Daly MJ (2012) Death by protein damage in irradiated cells. DNA Repair 11:12–21

    Article  PubMed  CAS  Google Scholar 

  • Daly MJ, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Leapman RD, Lai B, Ravel B, Li SM, Kemner KM, Fredrickson JK (2007) Protein oxidation implicated as the primary determinant of bacterial radioresistance. PLoS Biol 5:e92

    Article  PubMed  Google Scholar 

  • Daly MJ, Gaidamakova EK, Matrosova VY, Kiang JA, Fukumoto R, Lee D-Y, Wehr NB, Viteri GA, Berlett BS, Levine RL (2010) Small-molecule antioxidant proteome-shields in Deinococcus radiodurans. PLoS One 5:e12570

    Article  PubMed  Google Scholar 

  • DasSarma S, Arora P (2001) Halophiles. In: Encyclopedia of life sciences, Nature Publishing Group, pp 1–9

  • Davies R, Sinskey AJ (1973) Radiation-resistant mutants of Salmonella typhimurium LT2: development and characterization. J Bacteriol 113:133–144

    PubMed  CAS  Google Scholar 

  • DeVeaux LC, ller JA, Smith J, Petrisko J, Wells DP, DasSarma S (2007) Extremely radiation-resistant mutants of a halophilic archaeon with increased single-stranded DNA-binding protein (RPA) gene expression. Radiation Res 168:507–514

    Article  PubMed  CAS  Google Scholar 

  • Du J, Gebicki JM (2004) Proteins are major initial cell targets of hydroxyl free radicals. Int J Biochem Cell Biol 36:2334–2343

    Article  PubMed  CAS  Google Scholar 

  • Fredrickson JK, Li SM, Gaidamakova EK, Matrosova VY, Zhai M, Sulloway HM, Scholten JC, Brown MG, Balkwill DL, Daly MJ (2008) Protein oxidation: key to bacterial desiccation resistance? ISME J 2:393–403

    Article  PubMed  CAS  Google Scholar 

  • Goo YA, Yi EC, Baliga NS, Tao WA, Pan M, Aebersold R, Goodlett DR, Hood L, Ng WV (2003) Proteomic analysis of an extreme halophilic archaeon, Halobacterium sp. NRC-1. Mol Cell Proteomics 2(8):506–524

    PubMed  CAS  Google Scholar 

  • Granger AC, Gaidamakova EK, Matrosova VY, Daly MJ, Setlow P (2011) Effects of Mn and Fe levels on Bacillus subtilis spore resistance and effects of Mn2+, other divalent cations, orthophosphate, and dipicolinic acid on protein resistance to ionizing radiation. Appl Environ Microbiol 77:32–40

    Article  PubMed  CAS  Google Scholar 

  • Harris DR, Pollock SV, Wood EA, Goiffon RJ, Klingele AJ, Cabot EL, Schackwitz W, Martin J, Eggington J, Durfee TJ, Middle CM, Norton JE, Popelars MC, Li H, Klugman SA, Hamilton LL, Bane LB, Pennacchio LA, Albert TJ, Perna NT, Cox MM, Battista JR (2009) Directed evolution of ionizing radiation resistance in Escherichia coli. J Bacteriol 191:5240–5252

    Article  PubMed  CAS  Google Scholar 

  • Horsburgh MJ, Wharton SJ, Karavolos M, Foster SJ (2002) Manganese: elemental defence for a life with oxygen. Trends Microbiol 10:496–501

    Article  PubMed  CAS  Google Scholar 

  • Imlay JA (2003) Pathways of oxidative damage. Annu Rev Microbiol 57:395–418

    Article  PubMed  CAS  Google Scholar 

  • Imlay JA (2006) Iron-sulphur clusters and the problem with oxygen. Mol Microbiol 59:1073–1082

    Article  PubMed  Google Scholar 

  • Imlay JA (2008) Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem 77:755–776

    Article  PubMed  CAS  Google Scholar 

  • Kaur A, Pan M, Meislin M, Facciotti MT, El-Gewely R, Baliga NS (2006) A systems view of haloarchaeal strategies to withstand stress from transition metals. Genome Res 16:841–854

    Article  PubMed  CAS  Google Scholar 

  • Kaur A, Van PT, Busch CR, Robinson CK, Pan M, Pang WL, Reiss D, DiRuggiero J, Baliga NS (2010) Coordination of frontline defense mechanisms under severe oxidative stress. Mol Syst Biol 393: doi:10.1038/msb.2010.1050

  • Kehres DG, Maguire ME (2003) Emerging themes in manganese transport, biochemistry and pathogenesis in bacteria. FEMS Microbiol Rev 27:263–290

    Article  PubMed  CAS  Google Scholar 

  • Kennedy SP, Ng WV, Salzberg SL, Hood L, DasSarma S (2001) Understanding the adaptation of Halobacterium Species NRC-1 to its extreme environment through computational analysis of its genome sequence. Genome Res 11:1641–1650

    Article  PubMed  CAS  Google Scholar 

  • Kish A, DiRuggiero J (2008) Rad50 is not essential for the Mre11-dependent repair of DNA double-strand breaks in Halobacterium sp. strain NRC-1. J Bacteriol 190:5210–5216

    Article  PubMed  CAS  Google Scholar 

  • Kish A, Kirkali G, Robinson C, Rosenblatt R, Jaruga P, Dizdaroglu M, DiRuggiero J (2009) Salt shield: intracellular salts provide cellular protection against ionizing radiation in the halophilic archaeon, Halobacterium salinarum NRC-1. Environ Microbiol 11:1066

    Article  PubMed  CAS  Google Scholar 

  • Kish A, Griffin PL, Rogers KL, Fogel ML, Hemley RJ, Steele A (2012) High-pressure tolerance in Halobacterium salinarum NRC-1 and other non-piezophilic prokaryotes. Extremophiles 16:355–361

    Article  PubMed  CAS  Google Scholar 

  • Kottemann M, Kish A, Iloanusi C, Bjork S, DiRuggiero J (2005) Physiological responses of the halophilic archaeon Halobacterium sp. strain NRC1 to desiccation and gamma irradiation. Extremophiles 9:219–227

    Article  PubMed  CAS  Google Scholar 

  • Markillie LM, Varnum SM, Hradecky P, Wong KK (1999) Targeted mutagenesis by duplication insertion in the radioresistant bacterium Deinococcus radiodurans: radiation sensitivities of catalase (katA) and superoxide dismutase (sodA) mutants. J Bacteriol 181:666–669

    Google Scholar 

  • McNaughton RL, Reddi AR, Clement MH, Sharma A, Barnese K, Rosenfeld L, Gralla EB, Valentine JS, Culotta VC, Hoffman BM (2010) Probing in vivo Mn2+ speciation and oxidative stress resistance in yeast cells with electron-nuclear double resonance spectroscopy. Proc Natl Acad Sci USA 107:15335–15339

    Article  PubMed  CAS  Google Scholar 

  • Mendis E, Rajapakse N, Kim SK (2005) Antioxidant properties of a radical-scavenging peptide purified from enzymatically prepared fish skin gelatin hydrolysate. J Agric Food Chem 53:581–587

    Article  PubMed  CAS  Google Scholar 

  • Nauser T, Koppenol WH, Gebicki JM (2005) The kinetics of oxidation of GSH by protein radicals. Biochem J 392:693–701

    Article  PubMed  CAS  Google Scholar 

  • Ogunniyi AD, Mahdi LK, Jennings MP, McEwan AG, McDevitt CA, Van der Hoek MB, Bagley CJ, Hoffmann P, Gould KA, Paton JC (2010) Central role of manganese in regulation of stress responses, physiology, and metabolism in Streptococcus pneumoniae. J Bacteriol 192:4489–4497

    Article  PubMed  CAS  Google Scholar 

  • Oren A, Gunde-Cimerman N (2007) Mycosporines and mycosporine-like amino acids: UV protectants or multipurpose secondary metabolites? FEMS Microbiol Lett 269:1–10

    Article  PubMed  CAS  Google Scholar 

  • Peng X, Xiong YL, Kong B (2009) Antioxidant activity of peptide fractions from whey protein hydrolysates as measured by electron spin resonance. Food Chem 113:196–201

    Article  CAS  Google Scholar 

  • Puri S, Hohle TH, O’Brian MR (2010) Control of bacterial iron homeostasis by manganese. Proc Natl Acad Sci USA 107:10691

    Article  PubMed  CAS  Google Scholar 

  • Reddi AR, Culotta VC (2011) Regulation of manganese antioxidants by nutrient sensing pathways in Saccharomyces cerevisiae. Genetics 189:1261–1270

    Article  PubMed  CAS  Google Scholar 

  • Riley PA (1994) Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int J Radiat Biol 65:27–33

    Article  PubMed  CAS  Google Scholar 

  • Robinson CK, Webb K, Kaur A, Jaruga P, Dizdaroglu M, Baliga NS, Place A, Diruggiero J (2011) A major role for nonenzymatic antioxidant processes in the radioresistance of Halobacterium salinarum. J Bacteriol 193:1653–1662

    Article  PubMed  CAS  Google Scholar 

  • Scott MD, Meshnick SR, Eaton JW (1989) Superoxide dismutase amplifies organismal sensitivity to ionizing radiation. J Biol Chem 264:2498–2501

    Google Scholar 

  • Sheih IC, Wu TK, Fang TJ (2009) Antioxidant properties of a new antioxidative peptide from algae protein waste hydrolysate in different oxidation systems. Bioresource Technol 100:3419–3425

    Article  CAS  Google Scholar 

  • Shirkey B, McMaster NJ, Smith SC, Wright DJ, Rodriguez H, Jaruga P, Birincioglu M, Helm RF, Potts M (2003) Genomic DNA of Nostoc commune (Cyanobacteria) becomes covalently modified during long-term (decades) desiccation but is protected from oxidative damage and degradation. Nucleic Acids Res 31:2995–3005

    Article  PubMed  CAS  Google Scholar 

  • Skowyra A, MacNeill SA (2012) Identification of essential and non-essential single-stranded DNA-binding proteins in a model archaeal organism. Nucleic Acids Res 40:1077–1090

    Article  PubMed  CAS  Google Scholar 

  • Slade D, Radman M (2011) Oxidative stress resistance in Deinococcus radiodurans. Microbiol Mol Biol Rev 75:133

    Article  PubMed  CAS  Google Scholar 

  • Slade D, Lindner AB, Paul G, Radman M (2009) Recombination and replication in DNA repair of heavily irradiated Deinococcus radiodurans. Cell 136:1044–1055

    Article  PubMed  CAS  Google Scholar 

  • Sobota JM, Imlay JA (2011) Iron enzyme ribulose-5-phosphate-3-epimerase in Escherichia coli is rapidly damaged by hydrogen peroxide but can be protected by manganese. Proc Natl Acad Sci USA 108:5402–5407

    Article  PubMed  CAS  Google Scholar 

  • Stroud A, Liddell S, Allers T (2012) Genetic and biochemical identification of a novel single-stranded DNA-binding complex in Haloferax volcanii. Frontiers Microbiol 3:224

    Google Scholar 

  • Van PT, Schmid AK, King NL, Kaur A, Pan M, Whitehead K, Koide T, Facciotti MT, Goo YA, Deutsch EW, Reiss DJ, Mallick P, Baliga NS (2008) Halobacterium salinarum NRC-1 PeptideAtlas: toward strategies for targeted proteomics and improved proteome coverage. J Proteome Res 7:3755–3764

    Article  PubMed  CAS  Google Scholar 

  • Webb KM, DiRuggiero J (2012) Role of Mn2+ and compatible solutes in the radiation resistance of thermophilic bacteria and archaea. Archaea. Article ID 845756. doi:10.1155/2012/845756

  • Webb KM, DiRuggiero J (2013) Radiation resistance in extremophiles: fending off multiple attacks. In: Seckbach J, Oren A, Stan-Lotter H (eds) Polyextremophiles: life under multiple forms of stress. Series: cellular origin, life in extreme habitats and astrobiology, vol 27. Springer, Dordrecht. doi:10.1007/978-94-007-6488-0_10

  • Whitehead K, Kish A, Pan M, Kaur A, Reiss DJ, King N, Hohmann L, DiRuggiero J, Baliga NS (2006) An integrated systems approach for understanding cellular responses to gamma radiation. Mol Syst Biol 47. doi:10.1038/msb4100091

  • Wold MS (1997) Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu Rev Biochem 66:61–92

    Article  PubMed  CAS  Google Scholar 

  • Wu HC, Chen HM, Shiau CY (2003) Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Res Intern 36:949–957

    Article  CAS  Google Scholar 

  • Yakovleva I, Bhagooli R, Takemura A, Hidaka M (2004) Differential susceptibility to oxidative stress of two scleractinian corals: antioxidant functioning of mycosporine-glycine. Comp Biochem Physiol B Biochem Mol Biol 139:721–730

    Article  PubMed  CAS  Google Scholar 

  • Yao AI, Facciotti MT (2011) Regulatory multidimensionality of gas vesicle biogenesis in Halobacterium salinarum NRC-1. Archaea. Article ID 716456

Download references

Acknowledgments

This work was supported by the AFOSR (Grant FA95500710158) to J. DiRuggiero. The authors thank Elena Gaidamakova and Vera Matrosova at the Uniformed Services University of the Health Sciences (USUHS) for their technical support using the gamma source at USUHS and M. J. Daly for his support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jocelyne DiRuggiero.

Additional information

Communicated by F. Robb.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Webb, K.M., Yu, J., Robinson, C.K. et al. Effects of intracellular Mn on the radiation resistance of the halophilic archaeon Halobacterium salinarum . Extremophiles 17, 485–497 (2013). https://doi.org/10.1007/s00792-013-0533-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-013-0533-9

Keywords

Navigation