Skip to main content
Log in

Genomic analysis of cold-active Colwelliaphage 9A and psychrophilic phage–host interactions

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The 104 kb genome of cold-active bacteriophage 9A, which replicates in the marine psychrophilic gamma-proteobacterium Colwellia psychrerythraea strain 34H (between −12 and 8 °C), was sequenced and analyzed to investigate elements of molecular adaptation to low temperature and phage–host interactions in the cold. Most characterized ORFs indicated closest similarity to gamma-proteobacteria and their phages, though no single module provided definitive phylogenetic grouping. A subset of primary structural features linked to psychrophily suggested that the majority of annotated phage proteins were not psychrophilic; those that were, primarily serve phage-specific functions and may also contribute to 9A’s restricted temperature range for replication as compared to host. Comparative analyses suggest ribonucleotide reductase genes were acquired laterally from host. Neither restriction modification nor the CRISPR-Cas system appeared to be the predominant phage defense mechanism of Cp34H or other cold-adapted bacteria; we hypothesize that psychrophilic hosts rely more on the use of extracellular polymeric material to block cell surface receptors recognized by phages. The relative dearth of evidence for genome-specific defenses, genetic transfer events or auxiliary metabolic genes suggest that the 9A-Cp34H system may be less tightly coupled than are other genomically characterized marine phage–host systems, with possible implications for phage specificity under different environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

9A:

Colwelliaphage 9A

11b:

Flavobacteriophage 11b

AMG:

Auxiliary metabolic gene

CDS:

Coding sequence corresponding to sequence of amino acids in predicted protein including start and stop codons

ch :

Conserved hypothetical protein

Cp34H:

Colwellia psychrerythraea strain 34H

CRISPR:

Clustered regularly interspaced short palindromic repeat

EPS:

Extracellular polymeric substances

LGT:

Lateral gene transfer

MPSP:

Marine Phage Sequencing Project

MT :

Methyltransferase

nr:

NCBI Genbank non-redundant database

nrd:

Ribonucleotide reductase

ORF:

Open reading frame

ORFan:

ORF with no known homolog

PHS:

Phage–host system

pp :

Predicted protein

RE:

Restriction enzyme

RM:

Restriction-modification system

SD:

Standard deviation

References

  • Ackermann H-W (2001) Frequency of morphological phage descriptions in the year 2000. Arch Virol 146(5):843–857

    Article  PubMed  CAS  Google Scholar 

  • Allen MA, Lauro FM, Williams TJ, Burg D, Siddiqui KS, De Francisci D, Chong KW, Pilak O, Chew HH, De Maere MZ, Ting L, Katrib M, Ng C, Sowers KR, Galperin MY, Anderson IJ, Ivanova N, Dalin E, Martinez M, Lapidus A, Hauser L, Land M, Thomas T, Cavicchioli R (2009) The genome sequence of the psychrophilic archaeon, Methanococcoides burtonii: the role of genome evolution in cold adaptation. ISME J 3(9):1012–1035

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    PubMed  CAS  Google Scholar 

  • Alvarez M, Zeelen JP, Mainfroid V, Rentier-Delrue F, Martial JA, Wyns L, Wierenga RK, Maes D (1998) Triose-phosphate isomerase (TIM) of the psychrophilic bacterium Vibrio marinus. Kinetic and structural properties. J Biol Chem 273(4):2199–2206

    Article  PubMed  CAS  Google Scholar 

  • Anderson RE, Brazelton WJ, Baross JA (2011) Using CRISPRs as a metagenomic tool to identify microbial hosts of a diffuse flow hydrothermal vent viral assemblage. FEMS Microbiol Ecol 77(1):120–133

    Article  PubMed  CAS  Google Scholar 

  • Angly FE, Felts B, Breitbart M, Salamon P, Edwards RA, Carlson C, Chan AM, Haynes M, Kelley S, Liu H, Mahaffy JM, Mueller JE, Nulton J, Olson R, Parsons R, Rayhawk S, Suttle CA, Rohwer F (2006) The marine viromes of four oceanic regions. PLoS Biol 4(11):2121–2131

    Article  CAS  Google Scholar 

  • Aoyama A, Hayashi M (1985) Effects of genome size on bacteriophage phi X174 DNA packaging in vitro. J Biol Chem 260(20):11033–11038

    PubMed  CAS  Google Scholar 

  • Ayala-del-Río HL, Chain PS, Grzymski JJ, Ponder MA, Ivanova N, Bergholz PW, Di Bartolo G, Hauser L, Land M, Bakermans C, Rodrigues D, Klappenbach J, Zarka D, Larimer F, Richardson P, Murray A, Thomashow M, Tiedje JM (2010) The genome sequence of Psychrobacter arcticus 273-4, a psychroactive Siberian permafrost bacterium, reveals mechanisms for adaptation to low-temperature growth. Appl Environ Microbiol 76(7):2304–2312

    Article  PubMed  Google Scholar 

  • Bakermans C (2012) Psychrophiles: life in the cold. In: Anitori R (ed) Extremophiles: microbiology and biotechnology. Caister Academic Press, Norwich, pp 53–76

    Google Scholar 

  • Bergholz PW, Bakermans C, Tiedje JM (2009) Psychrobacter arcticus 273-4 uses resource efficiency and molecular motion adaptations for subzero temperature growth. J Bacteriol 191(7):2340–2352

    Article  PubMed  CAS  Google Scholar 

  • Bolotin A, Quinquis B, Sorokin A, Ehrlich SD (2005) Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151(8):2551–2561

    Article  PubMed  CAS  Google Scholar 

  • Borriss M, Helmke E, Hanschke R, Schweder T (2003) Isolation and characterization of marine psychrophilic phage–host systems from Arctic sea ice. Extremophiles 7:377–384

    Article  PubMed  CAS  Google Scholar 

  • Borriss M, Lombardot T, Glöckner FO, Becher D, Albrecht D, Schweder T (2007) Genome and proteome characterization of the psychrophilic Flavobacterium bacteriophage 11b. Extremophiles 11(1):95–104

    Article  PubMed  CAS  Google Scholar 

  • Bowman JP, Gosink JJ, McCammon SA, Lewis TE, Nichols DS, Nichols PD, Skerratt JH, Staley JT, McMeekin TA (1998) Colwellia demingiae sp. nov., Colwellia hornerae sp. nov., Colwellia rossensis sp. nov. and Colwellia psychrotropica sp. nov.: psychrophilic Antarctic species with the ability to synthesize docosahexaenoic acid (22:ω63). Int J Syst Bacteriol 48(4):1171–1180

    Article  CAS  Google Scholar 

  • Breitbart M, Thompson LR, Suttle CA, Sullivan MB (2007) Exploring the vast diversity of marine viruses. Oceanography 20(2):135–139

    Article  Google Scholar 

  • Carver TJ, Rutherford KM, Berriman M, Rajandream M-A, Barrell BG, Parkhill J (2005) ACT: the Artemis comparison tool. Bioinformatics 21:3422–3423

    Article  PubMed  CAS  Google Scholar 

  • Chopin M-C, Chopin A, Bidnenko E (2005) Phage abortive infection in lactococci: variations on a theme. Curr Opin Microbiol 8(4):473–479

    Google Scholar 

  • Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg I, Hamelryck T, Kauff F, Wilczynski B, de Hoon MJL (2009) Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25:1422–1423

    Article  PubMed  CAS  Google Scholar 

  • Collins RE (2009) Identification of an inter-order lateral gene transfer event enabling the catabolism of common compatible solutes by Colwellia psychrerythraea 34H. In: Collins RE (ed) Microbial evolution in sea ice: communities to genes. PhD Dissertation. University of Washington, Seattle, pp 147–177

  • Collins RE, Deming JW (2011) Abundant dissolved genetic material in Arctic sea ice Part II: viral dynamics during autumn freeze-up. Polar Biol 43(12):1831–1841

    Article  Google Scholar 

  • Deming JW (2010) Sea ice bacteria and viruses. In: Thomas DN, Dieckman GS (eds) Sea ice—an introduction to its physics, chemistry, biology and geology, 2nd edn. Blackwell Science Ltd, Oxford, pp 247–82

  • Deming JW, Eicken H (2007) Life in ice. In: Sullivan WT, Baross JA (eds) Planets and life: the emerging science of astrobiology. Cambridge University Press, Cambridge, pp 292–312

    Google Scholar 

  • Ewert M, Deming JW (2011) Selective retention in saline ice of extracellular polysaccharides produced by the cold-adapted marine bacterium Colwellia psychrerythraea strain 34H. Ann Glaciol 52(57):111–117

    Article  CAS  Google Scholar 

  • Fuhrman JA, Noble RT (1995) Viruses and protists cause similar bacterial mortality in coastal seawater. Limnol Oceanogr 40(7):1236–1242

    Article  Google Scholar 

  • Grissa I, Vergnaud G, Pourcel C (2007a) CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 35:W52–W57

    Article  PubMed  Google Scholar 

  • Grissa I, Vergnaud G, Pourcel C (2007b) The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics 8:172–181

    Article  PubMed  Google Scholar 

  • Hambly E, Suttle CA (2005) The viriosphere, diversity, and genetic exchange within phage communities. Curr Opin Microbiol 8(4):444–450

    Article  PubMed  CAS  Google Scholar 

  • Hammad AM (1998) Evaluation of alginate-encapsulated Azotobacter chroococcum as a phage-resistant and an effective inoculum. J Basic Microbiol 38(1):9–16

    Article  CAS  Google Scholar 

  • Hanlon GW, Denyer SP, Olliff CJ, Ibrahim LJ (2001) Reduction in exopolysaccharide viscosity as an aid to bacteriophage penetration through Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 67(6):2746–2753

    Article  PubMed  CAS  Google Scholar 

  • Hatfull GF (2008) Bacteriophage genomics. Curr Opin Microbiol 11(5):447–453

    Article  PubMed  CAS  Google Scholar 

  • Hendrix RW, Smith MCM, Burns RN, Ford ME, Hatfull GF (1999) Evolutionary relationships among diverse bacteriophages and prophages: all the world’s a phage. Proc Natl Acad Sci 96(5):2192–2197

    Article  PubMed  CAS  Google Scholar 

  • Henn MR, Sullivan MB, Stange-Thomann N, Osburne MS, Berlin AM, Kelly L, Yandava C, Kodira C, Zeng Q, Weiand M, Sparrow T, Saif S, Giannoukos G, Nusbaum C, Young SK, Birren BW, Chisholm SW (2010) Analysis of high-throughput sequencing and annotation strategies for phage genomes. PLoS One 5(2):1–12

    Article  Google Scholar 

  • Huang S, Zhang Y, Chen F, Jiao N (2011) Complete genome sequence of a marine roseophage provides evidence into the evolution of gene transfer agents in alphaproteobacteria. Virol J 8:124–129

    Article  PubMed  CAS  Google Scholar 

  • Hughes KA, Sutherland IW, Clark J, Jones MV (1998) Bacteriophage and associated polysaccharide depolymerases—novel tools for study of bacterial biofilms. J Appl Microbiol 85(3):583–590

    Article  PubMed  CAS  Google Scholar 

  • Hulo C, de Castro E, Masson P, Bougueleret L, Bairoch A, Xenarios I, Le Mercier P (2010) ViralZone: a knowledge resource to understand virus diversity. Nucleic Acids Res 39:D576–D582

    Article  PubMed  Google Scholar 

  • Huston AL, Methe B, Deming JW (2004) Purification, characterization, and sequencing of an extracellular cold-active aminopeptidase produced by marine psychrophile Colwellia psychrerythraea strain 34H. Appl Environ Microbiol 70(6):3321–3328

    Article  PubMed  CAS  Google Scholar 

  • Jain R, Rivera MC, Lake JA (1999) Horizontal gene transfer among genomes: the complexity hypothesis. Proc Natl Acad Sci 96(7):3801–3806

    Article  PubMed  CAS  Google Scholar 

  • Jiang SC, Paul JH (1998) Gene transfer by transduction in the marine environment. Appl Environ Microbiol 64(8):2780–2787

    PubMed  CAS  Google Scholar 

  • Jorgensen BB, Boetius A (2007) Feast and famine—microbial life in the deep-sea bed. Nat Rev Microbiol 5(10):770–781

    Article  PubMed  CAS  Google Scholar 

  • Jumars PA, Deming JW, Hill PS, Karp-Boss L, Yager PL, Dade WB (1993) Physical constraints on marine osmotrophy in an optimal foraging context. Mar Microb Food Webs 7(2):121–159

    Google Scholar 

  • Krembs C, Eicken H, Deming JW (2011) Exopolymer alteration of physical properties of sea ice and implications for ice habitability and biogeochemistry in a warmer Arctic. Proc Natl Acad Sci 108(9):3653–3658

    Article  PubMed  CAS  Google Scholar 

  • Kwan T, Liu J, DuBow M, Gros P, Pelletier J (2005) The complete genomes and proteomes of 27 Staphylococcus aureus bacteriophages. Proc Natl Acad Sci 102(14):5174–5179

    Article  PubMed  CAS  Google Scholar 

  • Labrie SJ, Samson JE, Moineau S (2010) Bacteriophage resistance mechanisms. Nat Rev Microbiol 8(5):317–327

    Article  PubMed  CAS  Google Scholar 

  • Liebner S, Wagner D (2007) Abundance, distribution and potential activity of methane oxidizing bacteria in permafrost soils from the Lena Delta, Siberia. Environ Microbiol 9:107–117

    Article  PubMed  CAS  Google Scholar 

  • Lohr JE, Chen F, Hill RT (2005) Genomic analysis of bacteriophage PhiJL001: insights into its interaction with a sponge-associated alpha-proteobacterium. Appl Environ Microbiol 71(3):1598–1609

    Article  PubMed  CAS  Google Scholar 

  • Mann NH, Clokie MRJ, Millard A, Cook A, Wilson WH, Wheatley PJ, Letarov A, Krisch HM (2005) The genome of S-PM2, a “photosynthetic” T4-type bacteriophage that infects marine Synechococcus strains. J Bacteriol 187(9):3188–3200

    Article  PubMed  CAS  Google Scholar 

  • Marx JG, Carpenter SD, Deming JW (2009) Production of cryoprotectant extracellular polysaccharide substances (EPS) by the marine psychrophilic bacterium Colwellia psychrerythraea strain 34H under extreme conditions. Can J Microbiol 55(1):63–72

    Article  PubMed  CAS  Google Scholar 

  • McInerney MJ, Rohlin L, Mouttaki H, Kim U, Krupp RS, Rios-Hernandez L, Sieber J, Struchtemeyer CG, Bhattacharyya A, Campbell JW, Robert P, Gunsalus RP (2007) The genome of Syntrophus aciditrophicus: life at the thermodynamic limit of microbial growth. Proc Natl Acad Sci 104(18):7600–7605

    Article  PubMed  Google Scholar 

  • Methé BA, Nelson KE, Deming JW, Momen B, Melamud E, Zhang X, Moult J, Madupu R, Nelson WC, Dodson RJ, Brinkac LM, Daugherty SC, Durkin AS, DeBoy RT, Kolonay JF, Sullivan SA, Zhou L, Davidsen TM, Wu M, Huston AL, Lewis M, Weaver B, Weidman JF, Khouri H, Utterback TR, Feldblyum TV, Fraser CM (2005) The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc Natl Acad Sci 102(31):10913–10918

    Article  PubMed  Google Scholar 

  • Metpally R, Reddy B (2009) Comparative proteome analysis of psychrophilic versus mesophilic bacterial species: insights into the molecular basis of cold adaptation of proteins. BMC Genomics 10(11):1–10

    Google Scholar 

  • Naito T, Kusano K, Kobayashi I (1995) Selfish behavior of restriction-modification systems. Science 267(5199):897–899

    Article  PubMed  CAS  Google Scholar 

  • Notredame C, Higgins DG, Heringa J (2000) T-coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302(1):205–217

    Article  PubMed  CAS  Google Scholar 

  • Olsen RH, Metcalf ES (1968) Conversion of mesophilic to psychrophilic bacteria. Science 162(3859):1288–1289

    Article  PubMed  CAS  Google Scholar 

  • Paul JH, Williamson SJ, Long A, Authement RN, John D, Segall AM, Rohwer FL, Androlewicz M, Patterson S (2005) Complete genome sequence of ϕHSIC, a pseudotemperate marine phage of Listonella pelagia. Appl Environ Microbiol 71(6):3311–3320

    Article  PubMed  CAS  Google Scholar 

  • Pomeroy LR, Wiebe WJ (2001) Temperature and substrates as interactive limiting factor for marine heterotrophic bacteria. Aquat Microb Ecol 23:187–204

    Article  Google Scholar 

  • Rivkina E, Laurinavichius K, McGrath J, Tiedje J, Shcherbakova V, Gilichinsky D (2004) Microbial life in permafrost. Adv Space Res 33(8):1215–1221

    Article  PubMed  CAS  Google Scholar 

  • Roberts RJ, Vincze T, Posfai J, Macelis D (2010) REBASE—a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res 38:D234–D236

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues DF, Tiedje JM (2008) Coping with our cold planet. Appl Environ Microbiol 74(6):1677–1686

    Article  PubMed  CAS  Google Scholar 

  • Rohwer F, Thurber RV (2009) Viruses manipulate the marine environment. Nature 459(7244):207–212

    Article  PubMed  CAS  Google Scholar 

  • Rosario K, Breitbart M (2011) Exploring the viral world through metagenomics. Curr Opin Virol 1(4):289–297

    Article  PubMed  CAS  Google Scholar 

  • Russell NJ, Harrisson P, Johnston IA, Jaenicke R, Zuber M, Franks F, Wynn-Williams D (1990) Cold adaptation of microorganisms. Philos Trans R Soc B 326(1237):595–611

    Article  CAS  Google Scholar 

  • Sano E, Carlson S, Wegley L, Rohwer F (2004) Movement of viruses between biomes. Appl Environ Microbiol 70(10):5842–5846

    Article  PubMed  CAS  Google Scholar 

  • Stern A, Sorek R (2011) The phage–host arms race: shaping the evolution of microbes. BioEssays 33(1):43–51

    Article  PubMed  CAS  Google Scholar 

  • Sullivan MB, Coleman ML, Weigele P, Rohwer F, Chisholm SW (2005) Three Prochlorococcus cyanophage genomes: signature features and ecological interpretations. PLoS Biol 3(5):790–806

    Article  CAS  Google Scholar 

  • Sullivan MB, Krastins B, Hughes JL, Kelly L, Chase M, Sarracino D, Chisholm SW (2009) The genome and structural proteome of an ocean siphovirus: a new window into the cyanobacterial “mobilome”. Environ Microbiol 11(11):2935–2951

    Article  PubMed  CAS  Google Scholar 

  • Suttle CA (1994) The significance of viruses to mortality in aquatic microbial communities. Microb Ecol 28(2):237–243

    Article  Google Scholar 

  • Suttle CA (2007) Marine viruses—major players in the global ecosystem. Nat Rev Microbiol 5(10):801–812

    Article  PubMed  CAS  Google Scholar 

  • Tatusov RL, Galperin MY, Natale DA, Koonin EV (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28(1):33–36

    Article  PubMed  CAS  Google Scholar 

  • Thomas DN, Dieckmann GS (2002) Antarctic sea ice—a habitat for extremophiles. Science 295(5555):641–644

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Thompson LR, Zeng Q, Kelly L, Huang KH, Singer AU, Stubbe J, Chisholm SW (2011) Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism. Proc Natl Acad Sci 108(39):E757–E764

    Article  PubMed  CAS  Google Scholar 

  • Ting L, Williams TJ, Cowley MJ, Lauro FM, Guilhaus M, Raftery MJ, Cavicchioli R (2010) Cold adaptation in the marine bacterium, Sphingopyxis alaskensis, assessed using quantitative proteomics. Environ Microbiol 12(10):2658–2676

    PubMed  CAS  Google Scholar 

  • Tock MR, Dryden DTF (2005) The biology of restriction and anti-restriction. Curr Opin Microbiol 8(4):466–472

    Article  PubMed  CAS  Google Scholar 

  • Van Valen L (1973) A new evolutionary law. Evolut Theor 1(1):1–3

    Google Scholar 

  • Wan X-F, Zhou J, Xu D (2006) CodonO: a new informatics method for measuring synonymous codon usage bias within and across genomes. Int J Gen Syst 35(1):109–125

    Article  Google Scholar 

  • Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ (2009) Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25(9):1189–1191

    Article  PubMed  CAS  Google Scholar 

  • Weinbauer MG, Rassoulzadegan F (2004) Are viruses driving microbial diversification and diversity? Environ Microbiol 6(1):1–11

    Article  PubMed  Google Scholar 

  • Wells LE (2006) Lysogeny among psychrophilic Colwellia. In: Wells LW (ed) Viral adaptations to life in the cold. PhD Dissertation. University of Washington, Seattle, pp 269–92

  • Wells LE (2008) Cold-active viruses. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, London, pp 157–173

    Chapter  Google Scholar 

  • Wells LE, Deming JW (2006a) Significance of bacterivory and viral lysis in bottom waters of Franklin Bay, Canadian Arctic, during winter. Aquat Microb Ecol 43(3):209–221

    Article  Google Scholar 

  • Wells LE, Deming JW (2006b) Characterization of a cold-active bacteriophage on two psychrophilic marine hosts. Aquat Microb Ecol 45(1):15–29

    Article  Google Scholar 

  • Wells LE, Deming JW (2006c) Effects of temperature, salinity and clay particles on inactivation and decay of cold-active marine Bacteriophage 9A. Aquat Microb Ecol 45(1):31–39

    Article  Google Scholar 

  • Wells LE, Deming JW (2006d) Modeled and measured dynamics of viruses in Arctic winter sea-ice brines. Environ Microbiol 8(6):1115–1121

    Article  PubMed  Google Scholar 

  • Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD, Hochstrasser DF (1999) Protein identification and analysis tools in the ExPASy server. Methods Mol Biol 112:531–552

    PubMed  CAS  Google Scholar 

  • Wommack KE, Colwell RR (2000) Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Bio Rev 64(1):69–114

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Support for this research was provided by NSF IGERT award 0504219, NSF OPP-ANS award 0908724 (JWD), and the Walters Endowed Professorship (JWD). Financial support for genome sequencing was provided by the Betty and Gordon Moore Foundation and performed by the Broad Institute of MIT and Harvard. We appreciate the input of John Baross, William Brazelton, Eric Collins, Gabrielle Rocap, Llyd Wells, members of the UW Center for Environmental Genomics, and anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesse R. Colangelo-Lillis.

Additional information

Communicated by A. Driessen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

792_2012_497_MOESM1_ESM.pdf

Fig. S1. Colwelliaphage 9A ORF protein characters compared to mean character value for all 9A ORFs. Each subfigure shows deviation from 9A genome character mean as fraction of that mean for each ORF. Modules separated with vertical lines. * indicates ORF contained no Glutamic Acid (E) residues, but was graphed as though it contained 1. Only ORFs with a minimum of two protein characters values scored as psychrophilic, or one character scored as strongly psychrophilic are shown. Note varying scale of x-axes. See text for definition of character values binned as psychrophilic and strongly psychrophilic and Table S1 for gene abbreviations (PDF 297 kb)

Table S1 (PDF 1113 kb)

Table S2 (PDF 133 kb)

Table S3 (PDF 60 kb)

Table S4 (PDF 92 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colangelo-Lillis, J.R., Deming, J.W. Genomic analysis of cold-active Colwelliaphage 9A and psychrophilic phage–host interactions. Extremophiles 17, 99–114 (2013). https://doi.org/10.1007/s00792-012-0497-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-012-0497-1

Keywords

Navigation