Skip to main content
Log in

A massively parallel geometric multigrid solver on hierarchically distributed grids

  • Published:
Computing and Visualization in Science

Abstract

A parallel geometric multigrid solver on hierarchically distributed grids is presented. Using a tree-structure for grid distribution onto the processing entities, the multigrid cycle is performed similarly to the serial algorithm, using additional vertical communication during transfer operations. The workload is gathered to fewer processes on coarser levels. Involved parallel structures are described in detail and the multigrid algorithm is formulated, discussing parallelization details. A performance study is presented that shows close to optimal efficiency for weak scaling up to 262k processes in 2 and 3 space dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Baker, A., Falgout, R., Kolev, T., Yang, U.: Multigrid smoothers for ultra-parallel computing. SIAM J. Sci. Comput. 33, 2864–2887 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Baker, A., Falgout, R., Kolev, T., Yang, U.: Scaling hypre’s multigrid solvers to 100,000 cores. In: M.W. Berry, K.A. Gallivan, E. Gallopoulos, A. Grama, B. Philippe, Y. Saad, F. Saied (eds.) High-Performance Scientific Computing, pp. 261–279. Springer, London (2012)

  3. Bastian, P., Birken, K., Johannsen, K., Lang, S., Reichenberger, V., Wieners, C., Wittum, G., Wrobel, C.: A parallel software-platform for solving problems of partial differential equations using unstructured grids and adaptive multigrid methods. High Perform. Comput. Sci. Eng. 98, 326–339 (1999)

    Google Scholar 

  4. Bastian, P., Birken, K., Johannsen, K., Lang, S., Reichenberger, V., Wieners, C., Wittum, G., Wrobel, C.: Parallel solution of partial differential equations with adaptive multigrid methods on unstructured grids. In: E. Krause, W. Jäger (eds.) High Performance Computing in Science and Engineering ’99, pp. 496–508. Springer, Berlin Heidelberg (2000)

  5. Bastian, P., Blatt, M., Scheichl, R.: Algebraic multigrid for discontinuous galerkin discretizations of heterogeneous elliptic problems. Numer. Linear Algebra Appl. 19(2), 367–388 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bergen, B., Gradl, T., Rude, U., Hulsemann, F.: A massively parallel multigrid method for finite elements. Comput. Sci. Eng. 8(6), 56–62 (2006)

    Article  Google Scholar 

  7. Birken, K.: Dynamic Distributed Data in a Parallel Programming Environment, DDD, Reference Manual. Rechenzentrum Univ, Stuttgart (1994)

    Google Scholar 

  8. Blatt, M.: A parallel algebraic multigrid method for elliptic problems with highly discontinuous coefficients. Ph.D. thesis, Ruprecht-Karls-University Heidelberg (2010)

  9. Blatt, M., Bastian, P.: On the generic parallelisation of iterative solvers for the finite element method. Int. J. Comput. Sci. Eng. 4(1), 56–69 (2008)

    Google Scholar 

  10. Falgout, R.: An introduction to algebraic multigrid computing. Comput. Sci. Eng. 8(6), 24–33 (2006)

    Article  Google Scholar 

  11. Gmeiner, B., Gradl, T., Kostler, H., Rude, U.: Highly parallel geometric multigrid algorithm for hierarchical hybrid grids. In: NIC Symposium 2012-Proceedings, p. 323. Forschungszentrum Jülich (2012)

  12. Gropp, W., Lusk, E., Skjellum, A.: Using MPI: portable parallel programming with the message-passing interface, vol. 1. MIT press (1999)

  13. Hackbusch, W.: Multi-grid Methods and Applications, vol. 4. Springer, Berlin (1985)

    MATH  Google Scholar 

  14. Lang, S., Wittum, G.: Large-scale density-driven flow simulations using parallel unstructured grid adaptation and local multigrid methods. Concurr. Comput.: Pract. Exp. 17(11), 1415–1440 (2005)

  15. Sampath, R., Biros, G.: A parallel geometric multigrid method for finite elements on octree meshes. SIAM J. Sci. Comput. 32, 1361–1392 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Stroustrup, B.: The C++ Programming Language, 3rd edn. Addison-Wesley Longman Publishing Co., Boston (1997)

    Google Scholar 

  17. Sundar, H., Biros, G., Burstedde, C., Rudi, J., Ghattas, O., Stadler, G.: Parallel geometric-algebraic multigrid on unstructured forests of octrees. In: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, SC ’12, pp. 43:1–43:11. IEEE Computer Society Press, Los Alamitos, CA, USA (2012)

  18. Vogel, A., Reiter, S., Rupp, M., Nägel, A., Wittum, G.: Ug 4: a novel flexible software system for simulating pde based models on high performance computers. Comput. Vis. Sci. pp. 1–15 (2014)

  19. Wieners, C.: Distributed point objects. A new concept for parallel finite elements. In: T. Barth, M. Griebel, D. Keyes, R. Nieminen, D. Roose, T. Schlick, R. Kornhuber, R. Hoppe, J. Priaux, O. Pironneau, O. Widlund, J. Xu (eds.) Domain Decomposition Methods in Science and Engineering, Lecture Notes in Computational Science and Engineering, vol. 40, pp. 175–182. Springer, Berlin Heidelberg (2005)

Download references

Acknowledgments

This work has been supported by the Goethe Universität Frankfurt, the German Ministry of Economy and Technology (BMWi) via grant 02E10568, the German Ministry of Education and Research (BMBF) via grant 02E10326 and 01IH08014A, and the DFG by grants No. WI 1037/24-1 and WI 1037/25-1. The authors gratefully acknowledge the Gauss Centre for Supercomputing (GCS) for providing computing time through the John von Neumann Institute for Computing (NIC) on the GCS share of the supercomputer JUGENE at Jülich Supercomputing Centre (JSC). GCS is the alliance of the three national supercomputing centres HLRS (Universität Stuttgart), JSC (Forschungszentrum Jülich), and LRZ (Bayerische Akademie der Wissenschaften), funded by the German Federal Ministry of Education and Research (BMBF) and the German State Ministries for Research of Baden-Württemberg (MWK), Bayern (StMWFK) and Nordrhein-Westfalen (MIWF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Reiter.

Additional information

Communicated by: Randolph E. Bank.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reiter, S., Vogel, A., Heppner, I. et al. A massively parallel geometric multigrid solver on hierarchically distributed grids. Comput. Visual Sci. 16, 151–164 (2013). https://doi.org/10.1007/s00791-014-0231-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-014-0231-x

Keywords

Navigation