Skip to main content

Advertisement

Log in

Novel endodontic sealers induce cell cytotoxicity and apoptosis in a dose-dependent behavior and favorable response in mice subcutaneous tissue

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

The objective of the present study is to evaluate the in vitro cytotoxicity and in vivo biocompatibility of two novel endodontic sealers: RealSeal XT1 and Sealapex Xpress on the subcutaneous connective tissue of mice.

Materials and methods

The cytotoxicity was assessed by cell viability using the MTT assay (one-way ANOVA), trypan blue test (Mann-Whitney) and cell apoptosis by flow cytometer. For the subcutaneous study, polyethylene tubes filled with the sealers were implanted in 70 BALB/c mice: 6 experimental groups (n = 10/group) and 2 control groups with empty tubes (n = 5/group). At the end of experimental periods (7, 21, and 63 days), the tissue was removed and histotechnically processed. Angioblastic proliferation and edema (Fisher’s exact test) were evaluated, besides thickness measurement (μm) of the reactionary granulomatous tissue and neutrophil counts (Kruskal-Wallis and Dunn’s post test; Mann-Whitney) (α = 0.05).

Results

MTT assay, trypan blue, and analysis of apoptotic cells showed a dose-dependent direct effect: the more diluted the sealer, the less cytotoxic. Regarding the angioblastic proliferation and edema, difference between the sealers at 7 and 63 days occurred (p < 0.05). Both endodontic sealers initially promoted perimaterial tissue reaction as a foreign body granuloma and thus stimulated favorable tissue responses.

Conclusions

Both sealers showed a dose-dependent effect and promoted satisfactory subcutaneous tissue response; the sealer Sealapex Xpress was less cytotoxic and more biocompatible than RealSeal XT.

Clinical relevance

The step of root canal filling during endodontic treatment is highly important for the preservation of the periapical tissue integrity. Subcutaneous reaction to endodontic sealers enables scientific basis for clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Stoll R, Betke K, Stachniss V (2005) The influence of different factors on the survival of root canal fillings: a 10-year retrospective study. J Endod 31(11):783–790

    Article  PubMed  Google Scholar 

  2. Silva LA, Barnett F, Pumarola-Sune J et al (2014) Sealapex Xpress and RealSeal XT feature tissue compatibility in vivo. J Endod 40(9):1424–1428

    Article  PubMed  Google Scholar 

  3. Kostoryz EL, Tong PY, Strautman AF et al (2001) Effects of dental resins on TNF-alpha-induced ICAM-1 expression in endothelial cells. J Dent Res 80(9):1789–1792

    Article  PubMed  Google Scholar 

  4. Gregson KS, Terrence O’Neill J, Platt JA et al (2008) In vitro induction of hydrolytic activity in human gingival and pulp fibroblasts by triethylene glycol dimethacrylate and monocyte chemotatic protein-1. Dent Mater 24(11):1461–1467

    Article  PubMed  Google Scholar 

  5. Rakich DR, Wataha JC, Lefebvre CA et al (1998) Effects of dentin bonding agents on macrophage mitochondrial activity. J Endod 24(8):528–533

    Article  PubMed  Google Scholar 

  6. Rakich DR, Wataha JC, Lefebvre CA et al (1999) Effect of dentin bonding agents on the secretion of inflammatory mediators from macrophages. J Endod 25(2):114–117

    Article  PubMed  Google Scholar 

  7. Cintra LT, Bernabe PF, de Moraes IG et al (2010) Evaluation of subcutaneous and alveolar implantation surgical sites in the study of the biological properties of root-end filling endodontic materials. J Appl Oral Sci 18(1):75–82

    Article  PubMed  PubMed Central  Google Scholar 

  8. Marques AA, Sponchiado EC Jr, Garcia LF et al (2011) Morphological analysis of tissue reaction caused by a new endodontic paste in subcutaneous tissue of rats. J Conserv Dent 14(3):309–313

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mori GG, Teixeira LM, de Oliveira DL et al (2014) Biocompatibility evaluation of biodentine in subcutaneous tissue of rats. J Endod 40(9):1485–1488

    Article  PubMed  Google Scholar 

  10. Gomes-Filho JE, Gomes AC, Watanabe S et al (2011) Evaluation of tissue reaction, cell viability and cytokine production induced by Sealapex Plus. J Appl Oral Sci 19(4):329–336

    Article  PubMed  PubMed Central  Google Scholar 

  11. Grecca FS, Kopper PM, Santos RB et al (2011) Biocompatibility of RealSeal, its primer and AH Plus implanted in subcutaneous connective tissue of rats. J Appl Oral Sci 19(1):52–56

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yamanaka Y, Shigetani Y, Yoshiba K et al (2011) Immunohistochemical analysis of subcutaneous tissue reactions to methacrylate resin-based root canal sealers. Int Endod J 44(7):669–675

    Article  PubMed  Google Scholar 

  13. ISO 10993-12 (2007) Biological evaluation of medical devices—part 12: sample preparation and reference materials. International Standards Organization, Switzerland

    Google Scholar 

  14. ISO 10993-5 (2009) Biological evaluation of medical devices—part 5: tests for in vitro cytotoxicity. International Standards Organization, Switzerland, pp 1–34

    Google Scholar 

  15. Queiroz AM, Assed S, Consolaro A et al (2011) Subcutaneous connective tissue response to primary root canal filling materials. Braz Dent J 22(3):203–211

    Article  PubMed  Google Scholar 

  16. ISO-10993-6 (2007) Biological evaluation of medical devices—part 6: tests for local effects after implantation. International Standards Organization, Switzerland, pp 1–21

    Google Scholar 

  17. Bailey GC, Ng YL, Cunnington SA et al (2004) Root canal obturation by ultrasonic condensation of gutta-percha. Part II: an in vitro investigation of the quality of obturation. Int Endod J 37(10):694–698

    Article  PubMed  Google Scholar 

  18. Marciano MA, Bramante CM, Duarte MA et al (2010) Evaluation of single root canals filled using the lateral compaction, tagger’s hybrid, microseal and guttaflow techniques. Braz Dent J 21(5):411–415

    Article  PubMed  Google Scholar 

  19. Heyder M, Kranz S, Volpel A et al (2013) Antibacterial effect of different root canal sealers on three bacterial species. Dent Mater 29(5):542–549

    Article  PubMed  Google Scholar 

  20. Barros J, Costa-Rodrigues J, Lopes MA et al (2014) Response of human osteoblastic and osteoclastic cells to AH plus and pulp canal sealer containing quaternary ammonium polyethylenimine nanoparticles. J Endod 40(8):1149–1155

    Article  PubMed  Google Scholar 

  21. Camargo CH, Oliveira TR, Silva GO et al (2014) Setting time affects in vitro biological properties of root canal sealers. J Endod 40(4):530–533

    Article  PubMed  Google Scholar 

  22. Melegari KK, Botero TM, Holland GR (2006) Prostaglandin E production and viability of cells cultured in contact with freshly mixed endodontic materials. Int Endod J 39(5):357–362

    Article  PubMed  Google Scholar 

  23. van Furth R, Cohn ZA, Hirsch JG et al (1972) The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bull World Health Organ 46(6):845–852

    PubMed  PubMed Central  Google Scholar 

  24. Unanue ER (1978) The regulation of lymphocyte functions by the macrophage. Immunol Rev 40:227–255

    Article  PubMed  Google Scholar 

  25. Stern MH, Mackler BF, Dreizen S (1981) A quantitative method for the analysis of human periapical inflammation. J Endod 7(2):70–74

    Article  PubMed  Google Scholar 

  26. Kawashima N, Okiji T, Kosaka T et al (1996) Kinetics of macrophages and lymphoid cells during the development of experimentally induced periapical lesions in rat molars: a quantitative immunohistochemical study. J Endod 22(6):311–316

    Article  PubMed  Google Scholar 

  27. Silva RA, Assed S, Nelson-Filho P et al (2009) Subcutaneous tissue response of isogenic mice to calcium hydroxide-based pastes with chlorhexidine. Braz Dent J 20(2):99–106

    Article  PubMed  Google Scholar 

  28. Gomes-Filho JE, Watanabe S, Gomes AC et al (2009) Evaluation of the effects of endodontic materials on fibroblast viability and cytokine production. J Endod 35(11):1577–1579

    Article  PubMed  Google Scholar 

  29. Xu P, Liang J, Dong G et al (2010) Cytotoxicity of RealSeal on human osteoblast-like MG63 cells. J Endod 36(1):40–44

    Article  PubMed  Google Scholar 

  30. Rodrigues C, Costa-Rodrigues J, Capelas JA et al (2014) Behaviour of co-cultured human osteoclastic and osteoblastic cells exposed to endodontic sealers’ extracts. Clin Oral Investig 18(2):479–488

    Article  PubMed  Google Scholar 

  31. Badole GP, Warhadpande MM, Meshram GK et al (2013) A comparative evaluation of cytotoxicity of root canal sealers: an in vitro study. Restor Dent Endod 38(4):204–209

    Article  PubMed  PubMed Central  Google Scholar 

  32. Heil J, Reifferscheid G, Waldmann P et al (1996) Genotoxicity of dental materials. Mutat Res 368(3–4):181–194

    Article  PubMed  Google Scholar 

  33. Brodin P (1988) Neurotoxic and analgesic effects of root canal cements and pulp-protecting dental materials. Endod Dent Traumatol 4(1):1–11

    Article  PubMed  Google Scholar 

  34. Chang MC, Lin LD, Chen YJ et al (2010) Comparative cytotoxicity of five root canal sealers on cultured human periodontal ligament fibroblasts. Int Endod J 43(3):251–257

    Article  PubMed  Google Scholar 

  35. Silva L, Nelson-Filho P, Leonardo MR et al (2002) Effect of calcium hydroxide on bacterial endotoxin in vivo. J Endod 28(2):94–98

    Article  PubMed  Google Scholar 

  36. Schwarze T, Leyhausen G, Geurtsen W (2002) Long-term cytocompatibility of various endodontic sealers using a new root canal model. J Endod 28(11):749–753

    Article  PubMed  Google Scholar 

  37. Silva LA, Leonardo MR, Oliveira DS et al (2010) Histopathological evaluation of root canal filling materials for primary teeth. Braz Dent J 21(1):38–45

    Article  PubMed  Google Scholar 

  38. Ito IY, Junior FM, Paula-Silva FW et al (2011) Microbial culture and checkerboard DNA-DNA hybridization assessment of bacteria in root canals of primary teeth pre- and post-endodontic therapy with a calcium hydroxide/chlorhexidine paste. Int J Paediatr Dent 21(5):353–360

    Article  PubMed  Google Scholar 

  39. Dahl JE (2005) Toxicity of endodontic filling materials. Endod Topics:39–43

  40. Anderson JM (2001) Biological responses to materials. Ann Rev Mat Res 31:81–110

    Article  Google Scholar 

  41. Folkman J (1972) Anti-angiogenesis: new concept for therapy of solid tumors. Ann Surg 175(3):409–416

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yamanaka Y, Kaneko T, Yoshiba K et al (2012) Expression of angiogenic factors in rat periapical lesions. J Endod 38(3):313–317

    Article  PubMed  Google Scholar 

  43. Lopes JV, Oliveira PG, Sousa JB et al (2007) Histopathologic evaluation of the peritoneum exposed to heat shock: experimental study in rats. Acta Cir Bras 22(5):342–350

    Article  PubMed  Google Scholar 

  44. Zmener O, Pameijer CH, Kokubu GA et al (2010) Subcutaneous connective tissue reaction to methacrylate resin-based and zinc oxide and eugenol sealers. J Endod 36(9):1574–1579

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Morant Holanda de Oliveira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Funding

The work was supported by the São Paulo Research (FAPESP) in Brazil (Grant #2013/21180-7).

Ethical approval

This article does not contain any studies with human participants. The study was approved by the Institutional Animal Ethics Committee from the School of Dentistry of Ribeirão Preto, University of São Paulo (#2013.1.1403.58.8). All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Informed consent

For this type of study, formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, L.A.B., Azevedo, L.U., Consolaro, A. et al. Novel endodontic sealers induce cell cytotoxicity and apoptosis in a dose-dependent behavior and favorable response in mice subcutaneous tissue. Clin Oral Invest 21, 2851–2861 (2017). https://doi.org/10.1007/s00784-017-2087-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-017-2087-1

Keywords

Navigation