Skip to main content

Advertisement

Log in

No evidence for the growth-stimulating effect of monomers on cariogenic Streptococci

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Background

In spite of contradicting results, the high susceptibility of composites for secondary caries is still often associated with the bacterial growth-stimulating effect of released methacrylate monomers. However, most studies that showed this effect were performed with techniques having inherent limitations (spectrophotometry).

Objectives

Therefore, our objective was to determine the effect of four methacrylate monomers (2-Hydroxyethyl methacrylate (HEMA), triethylene glycol dimethacrylate (TEGDMA), ethylene glycol dimethacrylate (EGDMA), diethylene glycol dimethacrylate (DEGDMA)) on the growth of two caries-associated bacteria, Streptococcus mutans and sobrinus, and one non-cariogenic species, Streptococcus sanguinis, using TaqMan quantitative polymerase chain reaction (qPCR) to quantify bacterial DNA.

Materials and methods

Cultures were exposed to monomer solutions selected after spectrophotometric growth measurements. At baseline and predetermined time intervals, bacterial DNA was extracted and quantified with TaqMan qPCR. Biofilms grown in the presence of monomers were analyzed with scanning electron microscopy (SEM).

Results

Spectrophotometry indeed showed increased growth rates of all three strains with 5 mM TEGDMA, EGDMA, and DEGDMA and increased total biomass of S. sanguinis with 5 mM TEGDMA. However, qPCR failed to show any growth-stimulating effect of these monomers on S. mutans and S. sobrinus. In contrast, some monomers exhibited a growth-inhibiting effect on S. sanguinis. SEM revealed extracellular matter in S. sobrinus and S. sanguinis biofilms, which might be attributed to polymer formation.

Conclusions

Techniques which quantify bacterial DNA are more appropriate to evaluate bacterial growth in the presence of monomers than spectrophotometry.

Clinical relevance

Even though methacrylate monomers did not affect the growth of cariogenic species, growth inhibition of S. sanguinis, a non-cariogenic antagonistic species, may lead to ecological shifts towards higher cariogenicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kopperud SE, Tveit AB, Gaarden T, Sandvik L, Espelid I (2012) Longevity of posterior dental restorations and reasons for failure. Eur J Oral Sci 120:539–548. doi:10.1111/eos.12004

    Article  PubMed  Google Scholar 

  2. Rho YJ, Namgung C, Jin BH, Lim BS, Cho BH (2013) Longevity of direct restorations in stress-bearing posterior cavities: a retrospective study. Oper Dent 38:572–582. doi:10.2341/12-432-C

    Article  PubMed  Google Scholar 

  3. Roumanas ED (2010) The frequency of replacement of dental restorations may vary based on a number of variables, including type of material, size of the restoration, and caries risk of the patient. J Evid Based Dent Pr 10:23–24. doi:10.1016/j.jebdp.2009.11.009

    Article  Google Scholar 

  4. Soncini JA, Maserejian NN, Trachtenberg F, Tavares M, Hayes C (2007) The longevity of amalgam versus compomer/composite restorations in posterior primary and permanent teeth: findings from the New England Children’s Amalgam Trial. J Am Dent Assoc 138:763–772

    Article  PubMed  Google Scholar 

  5. Gordan VV, Riley JL 3rd, Geraldeli S, Rindal DB, Qvist V, Fellows JL et al (2012) Repair or replacement of defective restorations by dentists in the Dental Practice-Based Research Network. J Am Dent Assoc 143:593–601

    Article  PubMed  PubMed Central  Google Scholar 

  6. Opdam NJ, Bronkhorst EM, Roeters JM, Loomans BA (2007) A retrospective clinical study on longevity of posterior composite and amalgam restorations. Dent Mater 23:2–8. doi:10.1016/j.dental.2005.11.036

    Article  PubMed  Google Scholar 

  7. Palotie U, Vehkalahti MM (2012) Reasons for replacement of restorations: dentists’ perceptions. Acta Odontol Scand 70:485–490. doi:10.3109/00016357.2011.640274

    Article  PubMed  Google Scholar 

  8. Bernardo M, Luis H, Martin MD, Leroux BG, Rue T, Leitao J et al (2007) Survival and reasons for failure of amalgam versus composite posterior restorations placed in a randomized clinical trial. J Am Dent Assoc 138:775–783

    Article  PubMed  Google Scholar 

  9. Opdam NJM, van de Sande FH, Bronkhorst E, Cenci MS, Bottenberg P, Pallesen U et al (2014) Longevity of posterior composite restorations: a systematic review and meta-analysis. J Dent Res:943–949. doi:10.1177/0022034514544217

  10. Seemann R, Flury S, Pfefferkorn F, Lussi A, Noack MJ (2014) Restorative dentistry and restorative materials over the next 20 years: a Delphi survey. Dent Mater 30:442–448. doi:10.1016/j.dental.2014.01.013

    Article  PubMed  Google Scholar 

  11. Nedeljkovic I, Teughels W, De Munck J, Van Meerbeek B, Van Landuyt KL (2015) Is secondary caries with composites a material-based problem? Dent Mater 31:e247–e277. doi:10.1016/j.dental.2015.09.001

    Article  PubMed  Google Scholar 

  12. Alshali RZ, Silikas N, Satterthwaite JD (2013) Degree of conversion of bulk-fill compared to conventional resin-composites at two time intervals. Dent Mater 29:e213–e217. doi:10.1016/j.dental.2013.05.011

    Article  PubMed  Google Scholar 

  13. Jaffer F, Finer Y, Santerre JP (2002) Interactions between resin monomers and commercial composite resins with human saliva derived esterases. Biomaterials 23:1707–1719

    Article  PubMed  Google Scholar 

  14. Kawai K, Torii M, Tuschitani Y (1988) Effect of resin components on the growth of Streptococcus mutans. J Osaka Univ Dent Sch 28:161–170

    PubMed  Google Scholar 

  15. Hansel C, Leyhausen G, Mai UE, Geurtsen W (1998) Effects of various resin composite (co)monomers and extracts on two caries-associated micro-organisms in vitro. J Dent Res 77:60–67

    Article  PubMed  Google Scholar 

  16. Takahashi Y, Imazato S, Russell RR, Noiri Y, Ebisu S (2004) Influence of resin monomers on growth of oral streptococci. J Dent Res 83:302–306

    Article  PubMed  Google Scholar 

  17. Geurtsen W (2000) Biocompatibility of resin-modified filling materials. Crit Rev Oral Biol Med 11:333–355

    Article  PubMed  Google Scholar 

  18. Goldberg M (2008) In vitro and in vivo studies on the toxicity of dental resin components: a review. Clin Oral Investig 12:1–8. doi:10.1007/s00784-007-0162-8

    Article  PubMed  Google Scholar 

  19. Lasfargues J-J, Colon P (2009) Odontologie conservatrice et restauratrice Tome 1 une approche médicale globale préface du Pr Guido Vanherle et du Pr Paul Lambrechts. Éd. CdP, Rueil-Malmaison

  20. Price RR, Viscount HB, Stanley MC, Leung KP (2007) Targeted profiling of oral bacteria in human saliva and in vitro biofilms with quantitative real-time PCR. Biofouling 23:203–213. doi:10.1080/08927010701251169

    Article  PubMed  Google Scholar 

  21. Suzuki N, Nakano Y, Yoshida A, Yamashita Y, Kiyoura Y (2004) Real-time TaqMan PCR for quantifying oral bacteria during biofilm formation. J Clin Microbiol 42:3827–3830. doi:10.1128/JCM.42.8.3827-3830.2004

    Article  PubMed  PubMed Central  Google Scholar 

  22. Suzuki N, Yoshida A, Nakano Y (2005) Quantitative analysis of multi-species oral biofilms by TaqMan Real-Time PCR. Clin Med Res 3:176–185

    Article  PubMed  PubMed Central  Google Scholar 

  23. Morillo JM, Lau L, Sanz M, Herrera D, Martin C, Silva A (2004) Quantitative real-time polymerase chain reaction based on single copy gene sequence for detection of periodontal pathogens. J Clin Periodontol 31:1054–1060. doi:10.1111/j.1600-051x.2004.00608.x

    Article  PubMed  Google Scholar 

  24. Yoshida A, Suzuki N, Nakano Y, Kawada M, Oho T, Koga T (2003) Development of a 5′ nuclease-based real-time PCR assay for quantitative detection of cariogenic dental pathogens Streptococcus mutans and Streptococcus sobrinus. J Clin Microbiol 41:4438–4441

    Article  PubMed  PubMed Central  Google Scholar 

  25. Seow WK, Lam JH, Tsang AK, Holcombe T, Bird PS (2009) Oral Streptococcus species in pre-term and full-term children—a longitudinal study. Int J Paediatr Dent 19:406–411. doi:10.1111/j.1365-263X.2009.01003.x

    Article  PubMed  Google Scholar 

  26. Van Landuyt KL, Snauwaert J, De Munck J, Peumans M, Yoshida Y, Poitevin A et al (2007) Systematic review of the chemical composition of contemporary dental adhesives. Biomaterials 28:3757–3785. doi:10.1016/j.biomaterials.2007.04.044

    Article  PubMed  Google Scholar 

  27. Kreth J, Merritt J, Shi W, Qi F (2005) Competition and coexistence between Streptococcus mutans and Streptococcus sanguinis in the dental biofilm. J Bacteriol 187:7193–7203. doi:10.1128/JB.187.21.7193-7203.2005

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kreth J, Zhang Y, Herzberg MC (2008) Streptococcal antagonism in oral biofilms: Streptococcus sanguinis and Streptococcus gordonii interference with Streptococcus mutans. J Bacteriol 190:4632–4640. doi:10.1128/JB.00276-08

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gregson KS, Shih H, Gregory RL (2012) The impact of three strains of oral bacteria on the surface and mechanical properties of a dental resin material. Clin Oral Investig 16:1095–1103. doi:10.1007/s00784-011-0613-0

    Article  PubMed  Google Scholar 

  30. Santos NC, Figueira-Coelho J, Martins-Silva J, Saldanha C (2003) Multidisciplinary utilization of dimethyl sulfoxide: pharmacological, cellular, and molecular aspects. Biochem Pharmacol 65:1035–1041

    Article  PubMed  Google Scholar 

  31. Van Landuyt KL, Nawrot T, Geebelen B, De Munck J, Snauwaert J, Yoshihara K et al (2011) How much do resin-based dental materials release? A meta-analytical approach. Dent Mater 27:723–747. doi:10.1016/j.dental.2011.05.001

    Article  PubMed  Google Scholar 

  32. Santerre JP, Shajii L, Tsang H (1999) Biodegradation of commercial dental composites by cholesterol esterase. J Dent Res 78:1459–1468

    Article  PubMed  Google Scholar 

  33. Kraigsley AM, Tang K, Lippa KA, Howarter JA, Lin-Gibson S, Lin NJ (2012) Effect of polymer degree of conversion on Streptococcus mutans biofilms. Macromol Biosci 12:1706–1713. doi:10.1002/mabi.201200214

    Article  PubMed  Google Scholar 

  34. Cvitkovitch DG, Li YH, Ellen RP (2003) Quorum sensing and biofilm formation in Streptococcal infections. J Clin Invest 112:1626–1632. doi:10.1172/JCI20430

    Article  PubMed  PubMed Central  Google Scholar 

  35. Giacaman RA, Torres S, Gomez Y, Munoz-Sandoval C, Kreth J (2015) Correlation of Streptococcus mutans and Streptococcus sanguinis colonization and ex vivo hydrogen peroxide production in carious lesion-free and high caries adults. Arch Oral Biol 60:154–159. doi:10.1016/j.archoralbio.2014.09.007

    Article  PubMed  Google Scholar 

  36. Bourbia M, Ma D, Cvitkovitch DG, Santerre JP, Finer Y (2013) Cariogenic bacteria degrade dental resin composites and adhesives. J Dent Res 92:989–994

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by the Research Foundation—Flanders (FWO) grant G.0884.13. We would like to thank Martine Pauwels, Rita Merckx, Esteban Rodríguez Herrero, and Jos Desair for their skillful assistance. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Authors’ contributions

Ivana Nedeljkovic was involved in the study protocol, performed the in vitro experiments, and wrote the paper; Kumiko Yoshihara was involved in the study protocol and in the in vitro experiments; Jan De Munck analyzed the data and performed the statistical analysis; Wim Teughels was involved in the study setup, supervised the in vitro experiments, analyzed the results, and wrote the paper; Bart Van Meerbeek was involved in the study protocol and the analysis of the data and wrote the paper; and Kirsten L. Van Landuyt developed the study protocol, supervised the in vitro experiments, analyzed the data, and wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirsten L. Van Landuyt.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

The work was supported by the Research Foundation—Flanders (FWO) grant G.0884.13.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nedeljkovic, I., Yoshihara, K., De Munck, J. et al. No evidence for the growth-stimulating effect of monomers on cariogenic Streptococci . Clin Oral Invest 21, 1861–1869 (2017). https://doi.org/10.1007/s00784-016-1972-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-016-1972-3

Keywords

Navigation