Skip to main content

Advertisement

Log in

Persistence of Porphyromonas gingivalis is a negative predictor in patients with moderate to severe periodontitis after nonsurgical periodontal therapy

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

The aim of this study was to evaluate the quality of prediction for stable results after nonsurgical periodontal therapy by several microbiological variables of the subgingival biofilm and biomarkers of gingival crevicular fluid or oral lavage.

Material and methods

Forty-six individuals with moderate or severe chronic periodontitis receiving nonsurgical periodontal therapy were monitored for clinical variables, selected microorganisms, and biomarkers at baseline and 3 and 6 months thereafter. Logistic regression analysis and general linear model (GLM) were applied for analysis of variance and covariance.

Results

At 6 months, 20 patients showed a high response (HR) to treatment (at least 60 % of reduction of numbers of sites with PD >4 mm), whereas 26 did not (low response, LR). All clinical variables were significantly improved at 3 and 6 months within each group (p < 0.001, each compared with baseline). Modeling the impact of Porphyromonas gingivalis, Treponema denticola, and median of MMP-8 on to the response to treatment as continuous variables by GLM showed a significant influence of these variables (p = 0.045) with the strongest influence of P. gingivalis (p = 0.012) followed by T. denticola (p = 0.045) and no association with MMP-8 (p = 0.982). Samples tested positively for P. gingivalis decreased only in HR (3 months: p = 0.003; 6 months: p = 0.002). Calprotectin levels in GCF were lower in the HR group compared with the LR group at 3 months (p = 0.008) and at 6 months (p = 0.018).

Conclusion

Persistence of P. gingivalis combined with a high GCF level of calprotectin may have a negative predictive value on response to periodontal therapy.

Clinical relevance

Microbiological diagnostics for P. gingivalis before and 3 months after SRP may have a predictive value on response to periodontal therapy. The combination with MMP-8 in oral lavage or preferably calprotectin in GCF might give additional information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hajishengallis G (2014) Immunomicrobial pathogenesis of periodontitis: keystones, pathobionts, and host response. Trends Immunol 35:3–11. doi:10.1016/j.it.2013.09.001S1471-4906(13)00145-2

    Article  PubMed  Google Scholar 

  2. Chen H, Jiang W (2014) Application of high-throughput sequencing in understanding human oral microbiome related with health and disease. Front Microbiol 5:508. doi:10.3389/fmicb.2014.00508

    PubMed  PubMed Central  Google Scholar 

  3. Socransky SS, Haffajee AD (2005) Periodontal microbial ecology. Periodontol 2000(38):135–187

    Article  Google Scholar 

  4. Griffen AL, Beall CJ, Campbell JH, Firestone ND, Kumar PS, Yang ZK, Podar M, Leys EJ (2012) Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing. ISME J 6:1176–1185. doi:10.1038/ismej.2011.191

    Article  PubMed  Google Scholar 

  5. Nakajima M, Arimatsu K, Kato T, Matsuda Y, Minagawa T, Takahashi N, Ohno H, Yamazaki K (2015) Oral administration of P. gingivalis induces dysbiosis of gut microbiota and impaired barrier function leading to dissemination of enterobacteria to the liver. PLoS One 10:e0134234. doi:10.1371/journal.pone.0134234

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ng HM, Kin LX, Dashper SG, Slakeski N, Butler CA, Reynolds EC (2015) Bacterial interactions in pathogenic subgingival plaque. Microb Pathog. doi:10.1016/j.micpath.2015.10.022

    PubMed  Google Scholar 

  7. Aberg CH, Kelk P, Johansson A (2015) Aggregatibacter actinomycetemcomitans: virulence of its leukotoxin and association with aggressive periodontitis. Virulence 6:188–195. doi:10.4161/21505594.2014.982428

    Article  PubMed  Google Scholar 

  8. Hajishengallis G (2014) The inflammophilic character of the periodontitis-associated microbiota. Mol Oral Microbiol 29:248–257. doi:10.1111/omi.12065

    Article  PubMed  PubMed Central  Google Scholar 

  9. Preshaw PM, Taylor JJ (2011) How has research into cytokine interactions and their role in driving immune responses impacted our understanding of periodontitis? J Clin Periodontol 38(Suppl 11):60–84. doi:10.1111/j.1600-051X.2010.01671.x

    Article  PubMed  Google Scholar 

  10. Sapna G, Gokul S, Bagri-Manjrekar K (2014) Matrix metalloproteinases and periodontal diseases. Oral Dis 20:538–550. doi:10.1111/odi.12159

    Article  PubMed  Google Scholar 

  11. Halperin-Sternfeld M, Levin L (2013) Do we really know how to evaluate tooth prognosis? A systematic review and suggested approach. Quintessence Int 44:447–456. doi:10.3290/j.qi.a29182

    PubMed  Google Scholar 

  12. Michalowicz BS, Hodges JS, Pihlstrom BL (2013) Is change in probing depth a reliable predictor of change in clinical attachment loss? J Am Dent Assoc 144:171–178

    Article  PubMed  Google Scholar 

  13. Luke R, Khan SN, Iqbal PS, Soman RR, Chakkarayan J, Krishnan V (2015) Estimation of specific salivary enzymatic biomarkers in individuals with gingivitis and chronic periodontitis: a clinical and biochemical study. J Int Oral Health 7:54–57

    PubMed  PubMed Central  Google Scholar 

  14. Ebersole JL, Schuster JL, Stevens J, Dawson D 3rd, Kryscio RJ, Lin Y, Thomas MV, Miller CS (2013) Patterns of salivary analytes provide diagnostic capacity for distinguishing chronic adult periodontitis from health. J Clin Immunol 33:271–279. doi:10.1007/s10875-012-9771-3

    Article  PubMed  Google Scholar 

  15. Leppilahti JM, Sorsa T, Kallio MA, Tervahartiala T, Emingil G, Han B, Mantyla P (2015) The utility of gingival crevicular fluid matrix metalloproteinase-8 response patterns in prediction of site-level clinical treatment outcome. J Periodontol 86:777–787. doi:10.1902/jop.2015.140421

    Article  PubMed  Google Scholar 

  16. Charalampakis G, Dahlen G, Carlen A, Leonhardt A (2013) Bacterial markers vs. clinical markers to predict progression of chronic periodontitis: a 2-yr prospective observational study. Eur J Oral Sci 121:394–402. doi:10.1111/eos.12080

    Article  PubMed  Google Scholar 

  17. Chen W, Cheng YM, Zhang SW, Pan Q (2014) Supervised method for periodontitis phenotypes prediction based on microbial composition using 16S rRNA sequences. Int J Comput Biol Drug Des 7:214–224. doi:10.1504/IJCBDD.2014.061647

    Article  PubMed  Google Scholar 

  18. Sanchez GA, Miozza VA, Delgado A, Busch L (2013) Salivary IL-1beta and PGE2 as biomarkers of periodontal status, before and after periodontal treatment. J Clin Periodontol 40:1112–1117. doi:10.1111/jcpe.12164

    Article  PubMed  Google Scholar 

  19. Leppilahti JM, Ahonen MM, Hernandez M, Munjal S, Netuschil L, Uitto VJ, Sorsa T, Mantyla P (2011) Oral rinse MMP-8 point-of-care immuno test identifies patients with strong periodontal inflammatory burden. Oral Dis 17:115–122. doi:10.1111/j.1601-0825.2010.01716.x

    Article  PubMed  Google Scholar 

  20. Ramseier CA, Kinney JS, Herr AE, Braun T, Sugai JV, Shelburne CA, Rayburn LA, Tran HM, Singh AK, Giannobile WV (2009) Identification of pathogen and host-response markers correlated with periodontal disease. J Periodontol 80:436–446. doi:10.1902/jop.2009.080480

    Article  PubMed  Google Scholar 

  21. Kinney JS, Ramseier CA, Giannobile WV (2007) Oral fluid-based biomarkers of alveolar bone loss in periodontitis. Ann N Y Acad Sci 1098:230–251

    Article  PubMed  PubMed Central  Google Scholar 

  22. Soder B, Airila Mansson S, Soder PO, Kari K, Meurman J (2006) Levels of matrix metalloproteinases-8 and -9 with simultaneous presence of periodontal pathogens in gingival crevicular fluid as well as matrix metalloproteinase-9 and cholesterol in blood. J Periodontal Res 41:411–417

    Article  PubMed  Google Scholar 

  23. Kinney JS, Morelli T, Braun T, Ramseier CA, Herr AE, Sugai JV, Shelburne CE, Rayburn LA, Singh AK, Giannobile WV (2011) Saliva/pathogen biomarker signatures and periodontal disease progression. J Dent Res 90:752–758

    Article  PubMed  PubMed Central  Google Scholar 

  24. Armitage GC (1999) Development of a classification system for periodontal diseases and conditions. Ann Periodontology / Am Acad Periodontol 4:1–6

    Article  Google Scholar 

  25. Griffiths GS (2003) Formation, collection and significance of gingival crevice fluid. Periodontology 2000(31):32–42

    Article  Google Scholar 

  26. Lange DE, Plagmann HC, Eenboom A, Promesberger A (1977) Clinical methods for the objective evaluation of oral hygiene. Dtsch Zahnarztl Z 32:44–47

    PubMed  Google Scholar 

  27. Eick S, Straube A, Guentsch A, Pfister W, Jentsch H (2011) Comparison of real-time polymerase chain reaction and DNA-strip technology in microbiological evaluation of periodontitis treatment. Diagn Microbiol Infect Dis 69:12–20

    Article  PubMed  Google Scholar 

  28. Yang JL, Wang MS, Cheng AC, Pan KC, Li CF, Deng SX (2008) A simple and rapid method for extracting bacterial DNA from intestinal microflora for ERIC-PCR detection. World J Gastroenterol 14:2872–2876

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cionca N, Giannopoulou C, Ugolotti G, Mombelli A (2009) Amoxicillin and metronidazole as an adjunct to full-mouth scaling and root planing of chronic periodontitis. J Periodontol 80:364–371. doi:10.1902/jop.2009.080540

    Article  PubMed  Google Scholar 

  30. Suvan J, Petrie A, Moles DR, Nibali L, Patel K, Darbar U, Donos N, Tonetti M, D’Aiuto F (2014) Body mass index as a predictive factor of periodontal therapy outcomes. J Dent Res 93:49–54. doi:10.1177/0022034513511084

    Article  PubMed Central  Google Scholar 

  31. (2013) SAS Institute Inc. SAS/STAT® User’s Guide. Version 9.4. SAS Institute Inc., Cary, NC

  32. Moher D, Schulz KF, Altman DG (2001) The CONSORT statement: revised recommendations for improving the quality of reports of parallel-group randomised trials. Lancet 357:1191–1194

    Article  PubMed  Google Scholar 

  33. Lang NP, Tonetti MS (2003) Periodontal risk assessment (PRA) for patients in supportive periodontal therapy (SPT). Oral Health Prev Dent 1:7–16

    PubMed  Google Scholar 

  34. Lang NP, Suvan JE, Tonetti MS (2015) Risk factor assessment tools for the prevention of periodontitis progression a systematic review. J Clin Periodontol 42(Suppl 16):S59–S70. doi:10.1111/jcpe.12350

    Article  PubMed  Google Scholar 

  35. Badersten A, Nilveus R, Egelberg J (1981) Effect of nonsurgical periodontal therapy. I Moderately advanced periodontitis. J Clin Periodontol 8:57–72

    Article  PubMed  Google Scholar 

  36. Eke PI, Wei L, Thornton-Evans GO, Borrell LN, Borgnakke WS, Dye B and Genco RJ (2016) Risk indicators for periodontitis in US adults: National Health and Nutrition Examination Survey (NHANES) 2009 - 2012. J Periodontol:1-18. doi:10.1902/jop.2016.160013

  37. Bunaes DF, Lie SA, Enersen M, Aastrom AN, Mustafa K, Leknes KN (2015) Site-specific treatment outcome in smokers following non-surgical and surgical periodontal therapy. J Clin Periodontol 42:933–942. doi:10.1111/jcpe.12462

    Article  PubMed  Google Scholar 

  38. Wan CP, Leung WK, Wong MC, Wong RM, Wan P, Lo EC, Corbet EF (2009) Effects of smoking on healing response to non-surgical periodontal therapy: a multilevel modelling analysis. J Clin Periodontol 36:229–239. doi:10.1111/j.1600-051X.2008.01371.x

    Article  PubMed  Google Scholar 

  39. Stratul SI, Sculean A, Rusu D, Didilescu A, Kasaj A, Jentsch H (2011) Effect of smoking on the results of a chlorhexidine digluconate treatment extended up to 3 months after scaling and root planing-a pilot study. Quintessence Int 42:555–563

    PubMed  Google Scholar 

  40. Farina R, Simonelli A, Rizzi A, Trombelli L (2010) Effect of smoking status on pocket probing depth and bleeding on probing following non-surgical periodontal therapy. Minerva Stomatol 59:1–12

    PubMed  Google Scholar 

  41. Joss A, Adler R, Lang NP (1994) Bleeding on probing. A parameter for monitoring periodontal conditions in clinical practice. J Clin Periodontol 21:402–408

    Article  PubMed  Google Scholar 

  42. Kurgan S, Fentoglu O, Onder C, Serdar M, Eser F, Tatakis DN, Gunhan M (2015) The effects of periodontal therapy on gingival crevicular fluid matrix metalloproteinase-8, interleukin-6 and prostaglandin E levels in patients with rheumatoid arthritis. J Periodontal Res. doi:10.1111/jre.12337

    Google Scholar 

  43. Tester AM, Cox JH, Connor AR, Starr AE, Dean RA, Puente XS, Lopez-Otin C, Overall CM (2007) LPS responsiveness and neutrophil chemotaxis in vivo require PMN MMP-8 activity. PLoS One 2:e312. doi:10.1371/journal.pone.0000312

    Article  PubMed  PubMed Central  Google Scholar 

  44. Romanelli R, Mancini S, Laschinger C, Overall CM, Sodek J, McCulloch CA (1999) Activation of neutrophil collagenase in periodontitis. Infect Immun 67:2319–2326

    PubMed  PubMed Central  Google Scholar 

  45. Nakamura T, Kido J, Kido R, Ohishi K, Yamauchi N, Kataoka M, Nagata T (2000) The association of calprotectin level in gingival crevicular fluid with gingival index and the activities of collagenase and aspartate aminotransferase in adult periodontitis patients. J Periodontol 71:361–367. doi:10.1902/jop.2000.71.3.361

    Article  PubMed  Google Scholar 

  46. Becerik S, Afacan B, Ozturk VO, Atmaca H, Emingil G (2011) Gingival crevicular fluid calprotectin, osteocalcin and cross-linked N-terminal telopeptid levels in health and different periodontal diseases. Dis Markers 31:343–352. doi:10.3233/DMA-2011-0849

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zhou M, Meng HX, Zhao YB, Chen ZB (2012) Changes of four proinflammatory proteins in whole saliva during experimental gingivitis. Chin J Dent Res 15:121–127

    PubMed  Google Scholar 

  48. Bevilacqua L, Eriani J, Serroni I, Liani G, Borelli V, Castronovo G, Di Lenarda R (2012) Effectiveness of adjunctive subgingival administration of amino acids and sodium hyaluronate gel on clinical and immunological parameters in the treatment of chronic periodontitis. Ann Stomatol (Roma) 3:75–81

    Google Scholar 

  49. Verstappen J, Von den Hoff JW (2006) Tissue inhibitors of metalloproteinases (TIMPs): their biological functions and involvement in oral disease. J Dent Res 85:1074–1084

    Article  PubMed  Google Scholar 

  50. Ramseier CA, Eick S, Bronnimann C, Buser D, Bragger U, Salvi GE (2016) Host-derived biomarkers at teeth and implants in partially edentulous patients. A 10-year retrospective study. Clin Oral Implants Res 27:211–217. doi:10.1111/clr.12566

    Article  PubMed  Google Scholar 

  51. Tuter G, Kurtis B, Serdar M (2002) Effects of phase I periodontal treatment on gingival crevicular fluid levels of matrix metalloproteinase-1 and tissue inhibitor of metalloproteinase-1. J Periodontol 73:487–493. doi:10.1902/jop.2002.73.5.487

    Article  PubMed  Google Scholar 

  52. Colombo AP, Bennet S, Cotton SL, Goodson JM, Kent R, Haffajee AD, Socransky SS, Hasturk H, Van Dyke TE, Dewhirst FE, Paster BJ (2012) Impact of periodontal therapy on the subgingival microbiota of severe periodontitis: comparison between good responders and individuals with refractory periodontitis using the human oral microbe identification microarray. J Periodontol 83:1279–1287. doi:10.1902/jop.2012.110566

    Article  PubMed  PubMed Central  Google Scholar 

  53. Tong KS, Zee KY, Lee DH, Corbet EF (2003) Clinical responses to mechanical periodontal treatment in Chinese chronic periodontitis patients with and without Actinobacillus actinomycetemcomitans. J Periodontol 74:1582–1588. doi:10.1902/jop.2003.74.11.1582

    Article  PubMed  Google Scholar 

  54. Cionca N, Giannopoulou C, Ugolotti G, Mombelli A (2010) Microbiologic testing and outcomes of full-mouth scaling and root planing with or without amoxicillin/metronidazole in chronic periodontitis. J Periodontol 81:15–23. doi:10.1902/jop.2009.090390

    Article  PubMed  Google Scholar 

  55. Shiloah J, Patters MR, Dean JW 3rd, Bland P, Toledo G (1998) The prevalence of Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, and Bacteroides forsythus in humans 1 year after 4 randomized treatment modalities. J Periodontol 69:1364–1372. doi:10.1902/jop.1998.69.12.1364

    Article  PubMed  Google Scholar 

  56. Byrne SJ, Dashper SG, Darby IB, Adams GG, Hoffmann B, Reynolds EC (2009) Progression of chronic periodontitis can be predicted by the levels of Porphyromonas gingivalis and Treponema denticola in subgingival plaque. Oral Microbiol Immunol 24:469–477. doi:10.1111/j.1399-302X.2009.00544.xOMI544 [pii]

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Stéphanie Larti, Anna Magdon, and Marianne Weibel (University of Bern, Department of Periodontology, Laboratory of Oral Microbiology) for the technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sigrun Eick.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

The study was funded by the participating departments, by Hain Lifescience, Nehren, Germany, along with a grant from the European Commission (FP7-HEALTH-F3-2012-306029 “TRIGGER”).

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

ESM 1

(PDF 74 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eick, S., Mathey, A., Vollroth, K. et al. Persistence of Porphyromonas gingivalis is a negative predictor in patients with moderate to severe periodontitis after nonsurgical periodontal therapy. Clin Oral Invest 21, 665–674 (2017). https://doi.org/10.1007/s00784-016-1933-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-016-1933-x

Keywords

Navigation