Skip to main content

Advertisement

Log in

PRGF exerts a cytoprotective role in zoledronic acid-treated oral cells

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

Bisphosphonates-related osteonecrosis of the jaw (BRONJ) is a common problem in patients undergoing long-term administration of highly potent nitrogen-containing bisphosphonates (N-BPs). This pathology occurs via bone and soft tissue mechanism. Zoledronic acid (ZA) is the most potent intravenous N-BP used to prevent bone loss in patients with bone dysfunction. The objective of this in vitro study was to evaluate the role of different ZA concentrations on the cells from human oral cavity, as well as the potential of plasma rich in growth factors (PRGF) to overcome the negative effects of this BP.

Material and methods

Primary human gingival fibroblasts and primary human alveolar osteoblasts were used. Cell proliferation was evaluated by means of a fluorescence-based method. A colorimetric assay to detect DNA fragmentation undergoing apoptosis was used to determine cell death, and the expression of both NF-κB and pNF-κB were quantified by Western blot analysis.

Results

ZA had a cytotoxic effect on both human gingival fibroblasts and human alveolar osteoblasts. This BP inhibits cell proliferation, stimulates apoptosis, and induces inflammation. However, the addition of PRGF suppresses all these negative effects of the ZA.

Conclusions

PRGF shows a cytoprotective role against the negative effects of ZA on primary oral cells.

Clinical relevance

At present, there is no definitive treatment for bisphosphonates-related osteonecrosis of the jaw (BRONJ), being mainly palliatives. Our results revealed that PRGF has a cytoprotective role in cells exposed to zoledronic acid, thus providing a reliable adjunctive therapy for the treatment of BRONJ pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Walter C, Klein MO, Pabst A, Al-Nawas B, Duschner H, Ziebart T (2010) Influence of bisphosphonates on endothelial cells, fibroblasts, and osteogenic cells. Clin Oral Investig 14(1):35–41. doi:10.1007/s00784-009-0266-4

    Article  PubMed  Google Scholar 

  2. Acil Y, Moller B, Niehoff P, Rachko K, Gassling V, Wiltfang J, Simon MJ (2012) The cytotoxic effects of three different bisphosphonates in-vitro on human gingival fibroblasts, osteoblasts and osteogenic sarcoma cells. J Craniomaxillofac Surg Off Publ Eur Assoc Craniomaxillofac Surg 40(8):e229–e235. doi:10.1016/j.jcms.2011.10.024

    Google Scholar 

  3. Koch FP, Yekta SS, Merkel C, Ziebart T, Smeets R (2010) The impact of bisphosphonates on the osteoblast proliferation and Collagen gene expression in vitro. Head Face Med 6:12. doi:10.1186/1746-160X-6-12

    Article  PubMed  PubMed Central  Google Scholar 

  4. Xu XL, Gou WL, Wang AY, Wang Y, Guo QY, Lu Q, Lu SB, Peng J (2013) Basic research and clinical applications of bisphosphonates in bone disease: what have we learned over the last 40 years? J Transl Med 11:303. doi:10.1186/1479-5876-11-303

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cartsos VM, Zhu S, Zavras AI (2008) Bisphosphonate use and the risk of adverse jaw outcomes: a medical claims study of 714,217 people. J Am Dent Assoc 139(1):23–30

    Article  PubMed  Google Scholar 

  6. Tanaka Y, Nagai Y, Dohdoh M, Oizumi T, Ohki A, Kuroishi T, Sugawara S, Endo Y (2013) In vitro cytotoxicity of zoledronate (nitrogen-containing bisphosphonate: NBP) and/or etidronate (non-NBP) in tumour cells and periodontal cells. Arch Oral Biol 58(6):628–637. doi:10.1016/j.archoralbio.2012.11.010

    Article  PubMed  Google Scholar 

  7. Hinchy NV, Jayaprakash V, Rossitto RA, Anders PL, Korff KC, Canallatos P, Sullivan MA (2013) Osteonecrosis of the jaw—prevention and treatment strategies for oral health professionals. Oral Oncol 49(9):878–886. doi:10.1016/j.oraloncology.2013.06.008

    Article  PubMed  Google Scholar 

  8. Marx RE (2003) Pamidronate (Aredia) and zoledronate (Zometa) induced avascular necrosis of the jaws: a growing epidemic. J Oral Maxillofac Surg Off J Am Assoc Oral Maxillofac Surg 61(9):1115–1117

    Article  Google Scholar 

  9. Agis H, Blei J, Watzek G, Gruber R (2010) Is zoledronate toxic to human periodontal fibroblasts? J Dent Res 89(1):40–45. doi:10.1177/0022034509354298

    Article  PubMed  Google Scholar 

  10. Ravosa MJ, Ning J, Liu Y, Stack MS (2011) Bisphosphonate effects on the behaviour of oral epithelial cells and oral fibroblasts. Arch Oral Biol 56(5):491–498. doi:10.1016/j.archoralbio.2010.11.003

    Article  PubMed  Google Scholar 

  11. Anitua E, Begona L, Orive G (2013) Treatment of hemimandibular paresthesia in a patient with bisphosphonate-related osteonecrosis of the jaw (BRONJ) by combining surgical resection and PRGF-Endoret. Br J Oral Maxillofac Surg 51(8):e272–e274. doi:10.1016/j.bjoms.2012.08.018

    Article  PubMed  Google Scholar 

  12. Mozzati M, Gallesio G, Arata V, Pol R, Scoletta M (2012) Platelet-rich therapies in the treatment of intravenous bisphosphonate-related osteonecrosis of the jaw: a report of 32 cases. Oral Oncol 48(5):469–474. doi:10.1016/j.oraloncology.2011.12.004

    Article  PubMed  Google Scholar 

  13. Scoletta M, Arata V, Arduino PG, Lerda E, Chiecchio A, Gallesio G, Scully C, Mozzati M (2013) Tooth extractions in intravenous bisphosphonate-treated patients: a refined protocol. J Oral Maxillofac Surg Off J Am Assoc Oral Maxillofac Surg 71(6):994–999. doi:10.1016/j.joms.2013.01.006

    Article  Google Scholar 

  14. Raja S, Byakod G, Pudakalkatti P (2009) Growth factors in periodontal regeneration. Int J Dent Hyg 7(2):82–89. doi:10.1111/j.1601-5037.2009.00380.x

    Article  PubMed  Google Scholar 

  15. Chen FM, An Y, Zhang R, Zhang M (2011) New insights into and novel applications of release technology for periodontal reconstructive therapies. J Control Release Off J Control Release Soc 149(2):92–110. doi:10.1016/j.jconrel.2010.10.021

    Article  Google Scholar 

  16. Anitua E, Orive G (2012) Endogenous regenerative technology using plasma- and platelet-derived growth factors. J Control Release Off J Control Release Soc 157(3):317–320. doi:10.1016/j.jconrel.2011.11.011

    Article  Google Scholar 

  17. Albanese A, Licata ME, Polizzi B, Campisi G (2013) Platelet-rich plasma (PRP) in dental and oral surgery: from the wound healing to bone regeneration. Immun Ageing 10(1):23. doi:10.1186/1742-4933-10-23

    Article  PubMed  PubMed Central  Google Scholar 

  18. Anitua E, Sanchez M, Prado R, Orive G (2011) Plasma rich in growth factors: the pioneering autologous technology for tissue regeneration. J Biomed Mater Res A 97(4):536. doi:10.1002/jbm.a.33053

    Article  PubMed  Google Scholar 

  19. Anitua E, Sanchez M, Orive G, Andia I (2007) The potential impact of the preparation rich in growth factors (PRGF) in different medical fields. Biomaterials 28(31):4551–4560. doi:10.1016/j.biomaterials.2007.06.037

    Article  PubMed  Google Scholar 

  20. Anitua E, Troya M, Orive G (2012) Plasma rich in growth factors promote gingival tissue regeneration by stimulating fibroblast proliferation and migration and by blocking transforming growth factor-beta1-induced myodifferentiation. J Periodontol 83(8):1028–1037. doi:10.1902/jop.2011.110505

    Article  PubMed  Google Scholar 

  21. Anitua E, Tejero R, Zalduendo MM, Orive G (2013) Plasma rich in growth factors promotes bone tissue regeneration by stimulating proliferation, migration, and autocrine secretion in primary human osteoblasts. J Periodontol 84(8):1180–1190. doi:10.1902/jop.2012.120292

    Article  PubMed  Google Scholar 

  22. Colella AD, Chegenii N, Tea MN, Gibbins IL, Williams KA, Chataway TK (2012) Comparison of Stain-Free gels with traditional immunoblot loading control methodology. Anal Biochem 430(2):108–110. doi:10.1016/j.ab.2012.08.015

    Article  PubMed  Google Scholar 

  23. Scheper M, Chaisuparat R, Cullen K, Meiller T (2010) A novel soft-tissue in vitro model for bisphosphonate-associated osteonecrosis. Fibrogenesis Tissue Repair 3:6. doi:10.1186/1755-1536-3-6

    Article  PubMed  PubMed Central  Google Scholar 

  24. Orriss IR, Key ML, Colston KW, Arnett TR (2009) Inhibition of osteoblast function in vitro by aminobisphosphonates. J Cell Biochem 106(1):109–118. doi:10.1002/jcb.21983

    Article  PubMed  Google Scholar 

  25. Tipton DA, Seshul BA, Dabbous M (2011) Effect of bisphosphonates on human gingival fibroblast production of mediators of osteoclastogenesis: RANKL, osteoprotegerin and interleukin-6. J Periodontal Res 46(1):39–47. doi:10.1111/j.1600-0765.2010.01306.x

    Article  PubMed  Google Scholar 

  26. Anitua E, Alkhraisat MH, Orive G (2012) Perspectives and challenges in regenerative medicine using plasma rich in growth factors. J Control Release Off J Control Release Soc 157(1):29–38. doi:10.1016/j.jconrel.2011.07.004

    Article  Google Scholar 

  27. Anitua E, Pascual C, Perez-Gonzalez R, Antequera D, Padilla S, Orive G, Carro E (2013) Intranasal delivery of plasma and platelet growth factors using PRGF-Endoret system enhances neurogenesis in a mouse model of Alzheimer's disease. PLoS One 8(9):e73118. doi:10.1371/journal.pone.0073118

    Article  PubMed  PubMed Central  Google Scholar 

  28. Anitua E, Pascual C, Antequera D, Bolos M, Padilla S, Orive G, Carro E (2014) Plasma rich in growth factors (PRGF-Endoret) reduces neuropathologic hallmarks and improves cognitive functions in an Alzheimer's disease mouse model. Neurobiol Aging 35(7):1582–1595. doi:10.1016/j.neurobiolaging.2014.01.009

    Article  PubMed  Google Scholar 

  29. Okada S, Kiyama T, Sato E, Tanaka Y, Oizumi T, Kuroishi T, Takahashi T, Sasaki K, Sugawara S, Endo Y (2013) Inhibition of phosphate transporters ameliorates the inflammatory and necrotic side effects of the nitrogen-containing bisphosphonate zoledronate in mice. Tohoku J Exp Med 231(2):145–158

    Article  PubMed  Google Scholar 

  30. Lesclous P, Abi Najm S, Carrel JP, Baroukh B, Lombardi T, Willi JP, Rizzoli R, Saffar JL, Samson J (2009) Bisphosphonate-associated osteonecrosis of the jaw: a key role of inflammation? Bone 45(5):843–852. doi:10.1016/j.bone.2009.07.011

    Article  PubMed  Google Scholar 

  31. Alessandri AL, Sousa LP, Lucas CD, Rossi AG, Pinho V, Teixeira MM (2013) Resolution of inflammation: mechanisms and opportunity for drug development. Pharmacol Ther 139(2):189–212. doi:10.1016/j.pharmthera.2013.04.006

    Article  PubMed  Google Scholar 

  32. Nathan C, Ding A (2010) Nonresolving inflammation. Cell 140(6):871–882. doi:10.1016/j.cell.2010.02.029

    Article  PubMed  Google Scholar 

  33. Yamamoto Y, Gaynor RB (2004) IkappaB kinases: key regulators of the NF-kappaB pathway. Trends Biochem Sci 29(2):72–79. doi:10.1016/j.tibs.2003.12.003

    Article  PubMed  Google Scholar 

  34. Zhang J, Middleton KK, Fu FH, Im HJ, Wang JH (2013) HGF mediates the anti-inflammatory effects of PRP on injured tendons. PLoS One 8(6):e67303. doi:10.1371/journal.pone.0067303

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bendinelli P, Matteucci E, Dogliotti G, Corsi MM, Banfi G, Maroni P, Desiderio MA (2010) Molecular basis of anti-inflammatory action of platelet-rich plasma on human chondrocytes: mechanisms of NF-kappaB inhibition via HGF. J Cell Physiol 225(3):757–766. doi:10.1002/jcp.22274

    Article  PubMed  Google Scholar 

  36. Montaseri A, Busch F, Mobasheri A, Buhrmann C, Aldinger C, Rad JS, Shakibaei M (2011) IGF-1 and PDGF-bb suppress IL-1beta-induced cartilage degradation through down-regulation of NF-kappaB signaling: involvement of Src/PI-3K/AKT pathway. PLoS One 6(12):e28663. doi:10.1371/journal.pone.0028663

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pabst AM, Kruger M, Ziebart T, Jacobs C, Walter C (2015) Isoprenoid geranylgeraniol: the influence on cell characteristics of endothelial progenitor cells after bisphosphonate therapy in vitro. Clin Oral Investig. doi:10.1007/s00784-014-1394-z

    Google Scholar 

  38. Martins MA, Martins MD, Lascala CA, Curi MM, Migliorati CA, Tenis CA, Marques MM (2012) Association of laser phototherapy with PRP improves healing of bisphosphonate-related osteonecrosis of the jaws in cancer patients: a preliminary study. Oral Oncol 48(1):79–84. doi:10.1016/j.oraloncology.2011.08.010

    Article  PubMed  Google Scholar 

  39. Rasmusson L, Abtahi J (2014) Bisphosphonate associated osteonecrosis of the jaw: an update on pathophysiology, risk factors, and treatment. Int J Dent 2014:471035. doi:10.1155/2014/471035

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mozzati M, Arata V, Gallesio G (2012) Tooth extraction in patients on zoledronic acid therapy. Oral Oncol 48(9):817–821. doi:10.1016/j.oraloncology.2012.03.009

    Article  PubMed  Google Scholar 

  41. Mozzati M (2013) A report on a 7-year follow up of the surgical management with PRGF®-ENDORET® of oncologic patients affected by intravenous bisphosphonate related osteonecrosis of the jaw. Sur Curr Res 01(S12). doi:10.4172/2161-1076.s12-011

Download references

Compliance with ethical standards

Funding

This study was funded by Pharmascreen Saiotek project (Basque Government).

Conflict of interest

The authors declare the following competing financial interest(s): EA is the Scientific Director of, GO, MZ and MT are scientists at BTI Biotechnology Institute, a dental implant company that investigates in the fields of oral implantology and PRGF-Endoret technology.

Ethical approval

The study was performed following the principles of the Declaration of Helsinki, as revised in 2008 and after approval from the Foundation Eduardo Anitua Institutional Review Board.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gorka Orive.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anitua, E., Zalduendo, M., Troya, M. et al. PRGF exerts a cytoprotective role in zoledronic acid-treated oral cells. Clin Oral Invest 20, 513–521 (2016). https://doi.org/10.1007/s00784-015-1528-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-015-1528-y

Keywords

Navigation