Skip to main content

Advertisement

Log in

Evaluation of fit and efficiency of CAD/CAM fabricated all-ceramic restorations based on direct and indirect digitalization: a double-blinded, randomized clinical trial

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

The aim of this clinical trial was to evaluate the marginal and internal fit of CAD/CAM fabricated zirconia crowns and three-unit fixed dental prostheses (FDPs) resulting from direct versus indirect digitalization. The efficiency of both methods was analyzed.

Materials and methods

In 25 patients, 17 single crowns and eight three-unit FDPs were fabricated with all-ceramic zirconia using CAD/CAM technology. Each patient underwent two different impression methods; a computer-aided impression with Lava C.O.S. (CAI) and a conventional polyether impression with Impregum pent soft (CI). The working time for each group was recorded. Before insertion, the marginal and internal fit was recorded using silicone replicas of the frameworks. Each sample was cut into four sections and evaluated at four sites (marginal gap, mid-axial wall, axio-occlusal transition, centro-occlusal site) under ×64 magnification. The Mann–Whitney U test was used to detect significant differences between the two groups in terms of marginal and internal fit (α = 0.05).

Results

The mean for the marginal gap was 61.08 μm (±24.77 μm) for CAI compared with 70.40 μm (±28.87 μm) for CI, which was a statistically significant difference. The other mean values for CAI and CI, respectively, were as follows in micrometers (± standard deviation): 88.27 (±41.49) and 92.13 (±49.87) at the mid-axial wall; 144.78 (±46.23) and 155.60 (±55.77) at the axio-occlusal transition; and 155.57 (49.85) and 171.51 (±60.98) at the centro-occlusal site. The CAI group showed significantly lower values of internal fit at the centro-occlusal site.

A quadrant scan with a computer-aided impression was 5 min 6 s more time efficient when compared with a conventional impression, and a full-arch scan was 1 min 34 s more efficient.

Conclusions

Although both direct and indirect digitalization facilitate the fabrication of single crowns and three-unit FDPs with clinically acceptable marginal fit, a significantly better marginal fit was noted with direct digitalization. Digital impressions are also less time-consuming for the dental practitioner and the patient.

Clinical relevance

The results show that a direct, intraoral, digitalized impression technique is more accurate and efficient when compared with conventional impressions in fabricating single crowns and three-unit FDPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5
Fig 6

Similar content being viewed by others

References

  1. Christensen GJ (2008) Will digital impressions eliminate the current problems with conventional impressions? J Am Dent Assoc 139(6):761–763

    Article  PubMed  Google Scholar 

  2. Beuer F, Schweiger J, Edelhoff D (2008) Digital dentistry: an overview of recent developments for CAD/CAM generated restorations. Br Dent J 204(9):505–511

    Article  PubMed  Google Scholar 

  3. Christensen GJ (2008) The challenge to conventional impressions. J Am Dent Assoc 139(3):347–349

    Article  PubMed  Google Scholar 

  4. Yuzbasioglu E, Kurt H, Turunc R, Bilir H (2014) Comparison of digital and conventional impression techniques: evaluation of patients’ perception, treatment comfort, effectiveness and clinical outcomes. BMC Oral Health. doi:10.1186/1472-6831-14-10

    PubMed Central  PubMed  Google Scholar 

  5. Breeding LC, Dixon DL (2000) Accuracy of casts generated from dual-arch impressions. J Prosthet Dent 84(4):403–407

    Article  PubMed  Google Scholar 

  6. Cho GC, Chee WW (2004) Distortion of disposable plastic stock trays when used with putty vinyl polysi- loxane impression materials. J Prosthet Dent 92(4):354–358

    Article  PubMed  Google Scholar 

  7. Luthardt RG et al (2006) Qualitative computer aided evaluation of dental impressions in vivo. Dent Mater 22(1):69–76

    Article  PubMed  Google Scholar 

  8. Luthardt RG, Walter MH, Weber A, Koch R, Rudolph H (2008) Clinical parameters influencing the accuracy of 1- and 2-stage impressions: a randomized controlled trial. Int J Prosthodont 21(4):322–327

    PubMed  Google Scholar 

  9. Balkenhol M, Ferger P, Wöstmann B (2007) Dimensional accuracy of 2-stage putty-wash impressions: influence of impression trays and viscosity. Int J Prosthodont 20(6):573–575

    PubMed  Google Scholar 

  10. Di Felice R, Scotti R, Belser UC (2002) The influence of the mixing technique on the content of voids in two polyether impression materials. Schweiz Monatsschr Zahnmed 112(1):12–16

    PubMed  Google Scholar 

  11. Persson AS, Andersson M, Oden A, Sandborgh-Englund G (2008) Computer aided analysis of digitized dental stone replicas by dental CAD/CAM technology. Dent Mater 24(8):1123–1130

    Article  PubMed  Google Scholar 

  12. Belser UC, MacEntee MI, Richter WA (1985) Fit of three porcelain-fused-to-metal marginal designs in vivo: a scanning electron microscope study. J Prosthet Dent 53(1):24–29

    Article  PubMed  Google Scholar 

  13. McLean JW, von Fraunhofer JA (1971) The estimation of cement film thickness by an in vivo technique. Br Dent J 131(3):107–111

    Article  PubMed  Google Scholar 

  14. Sailer I, Feher A, Filser F, Gauckler LJ, Lüthy H, Hämmerle CH (2007) Five-year clinical results of zirconia frameworks for posterior fixed partial dentures. Int J Prosthodont 20(4):383–388

    PubMed  Google Scholar 

  15. Padbury A Jr, Eber R, Wang HL (2003) Interactions between the gingiva and the margin of restorations. J Clin Periodontol 30(5):379–385

    Article  PubMed  Google Scholar 

  16. Lang NP, Kiel RA, Anderhalden K (1983) Clinical and microbiological effects of subgingival restorations with overhanging or clinically perfect margins. J Clin Periodontol 10(6):563–578

    Article  PubMed  Google Scholar 

  17. Wettstein F, Sailer I, Roos M, Hämmerle CH (2008) Clinical study of the internal gaps of zirconia and metal frameworks for fixed partial dentures. Eur J Oral Sci 116(3):272–279

    Article  PubMed  Google Scholar 

  18. Thompson VP, Rekow DE (2004) Dental ceramics and the molar crown testing ground. J Appl Oral Sci 12(spe):26–36

    Article  PubMed  Google Scholar 

  19. Conrad HJ, Seong WJ, Pesun IJ (2007) Current ceramic materials and systems with clinical recommendations: a systematic review. J Prosthet Dent 98(5):389–404

    Article  PubMed  Google Scholar 

  20. Mörmann W, Stawarczyk B, Ender A, Sener B, Attin T, Mehl A (2013) Wear characteristics of current aesthetic dental restorative CAD/CAM materials: two-body wear, gloss retention, roughness and martens hardness. J Mech Behav Biomed Mater 20:113–125. doi:10.1016/j.jmbbm.2013.01.003 Epub 2013 Jan 23

    Article  PubMed  Google Scholar 

  21. Koller M, Arnetzl GV, Holly L, Arnetzl G (2012) Lava ultimate resin nano ceramic for CAD/ CAM: customization case study. Int J Comput Dent 15(2):159–164

    PubMed  Google Scholar 

  22. Rinke S, Schäfer S, Schmidt AK (2014) Einsatzmöglichkeiten zirkonverstärkter Lithiumsilikat- Keramiken. Quintessenz Zahntech 40(5):536–546

    Google Scholar 

  23. Rosentritt M (2013) Verschleißuntersuchung an keramischen Werkstoffen, Report Number: 219_3; 02/2013. Universitätsklinikum Regensburg, Poliklinik für Zahnärztliche Prothetik, Regensburg

    Google Scholar 

  24. Stawarczyk B, Eichberger M, Hoffmann R, Noack F, Schweiger J, Edelhoff D, Beuer F (2014) A novel CAD/ CAM base metal compared to conventional CoCrMo alloys: an in-vitro study of the long-term metal-ceramic bond strength. Oral Health Dent Manag 13(2):446–452

    PubMed  Google Scholar 

  25. Brawek PK, Wolfart S, Endres L, Kirsten A, Reich S (2013) The clinical accuracy of single crowns exclusively fabricated by digital workflow-the comparison of two systems. Clin Oral Investig 17(9):2119–2125

    Article  PubMed  Google Scholar 

  26. Beuer F, Schweiger J, Eichberger M, Kappert HF, Gernet W, Edelhoff D (2009) High-strength CAD/CAM-fabricated veneering material sintered to zirconia copings—a new fabrication mode for all-ceramic restorations. Dent Mater 25(1):121–128

    Article  PubMed  Google Scholar 

  27. Mehl A, Koch R, Zaruba M, Ender A (2013) 3D monitoring and quality control using intraoral optical camera systems. Int J Comput Dent 16(1):23–36

    PubMed  Google Scholar 

  28. Rekow ED (2006) Dental CAD/CAM systems: a 20-year success story. J Am Dent Assoc 137(Suppl):5S–6S

    Article  PubMed  Google Scholar 

  29. Mörmann WH, Bindl A (1996) The new creativity in ceramic restorations: dental CAD-CIM. Quintessence Int 27(12):821–828

    PubMed  Google Scholar 

  30. Mehl A, Ender A, Mörmann W, Attin T (2009) Accuracy testing of a new intraoral 3D camera. Int J Comput Dent 12(1):11–28

    PubMed  Google Scholar 

  31. Ziegler M (2009) Digital impression taking with reproducibly high precision. Int J Comput Dent 12(2):159–163

    PubMed  Google Scholar 

  32. Rohaly J (2009) The development of the Lava chairside oral scanner C.O.S. technology—masterstroke of a legion of talented and committed people. Int J Comput Dent 12(2):165–169

    PubMed  Google Scholar 

  33. Güth JF, Keul C, Stimmelmayr M, Beuer F, Edelhoff D (2013) Accuracy of digital models obtained by direct and indirect data capturing. Clin Oral Investig 17(4):1201–1208, PMID: 22847854

    Article  PubMed  Google Scholar 

  34. Kachalia PR, Geissberger MJ (2010) Dentistry a la carte: in-office CAD/CAM technology. J Calif Dent Assoc 38(5):323–330

    PubMed  Google Scholar 

  35. Syrek A, Reich G, Ranftl D, Klein C, Cerny B, Brodesser J (2010) Clinical evaluation of all-ceramic crowns fabricated from intraoral digital impressions based on the principle of active wavefront sampling. J Dent 38(7):553–559

    Article  PubMed  Google Scholar 

  36. Cardelli P, Scotti R, Monaco C (2011) Clinical fitting of CAD/CAM zirconia single crowns generated from digital intraoral impressions based on active wavefront sampling. J Dent. doi:10.1016/j.jdent.2011.10.005

    PubMed  Google Scholar 

  37. Reich S et al (2005) Clinical fit of all-ceramic three-unit fixed partial dentures, generated with three different CAD/CAM systems. Eur J Oral Sci 113(2):174–179

    Article  PubMed  Google Scholar 

  38. Reich S, Kappe K, Teschner H, Schmitt J (2008) Clinical fit of four-unit zirconia posterior fixed dental prostheses. Eur J Oral Sci 116(6):579–584

    Article  PubMed  Google Scholar 

  39. Beuer F, Naumann M, Gernet W (2009) Precision of fit: zirconia three-unit fixed denta prostheses. Clin Oral Investig 13:343–349

    Article  PubMed  Google Scholar 

  40. Almeida e Silva JS, Erdelt K, Edelhoff D, Araujo E, Stimmelmayr M, Vieira LC, Güth JF (2014) Marginal and internal fit of four-unit zirconia fixed dental prostheses based on digital and conventional impression techniques. Clin Oral Investig 18(2):515–523. doi:10.1007/s00784-013-0987-2

    Article  PubMed  Google Scholar 

  41. Seelbach P, Brueckel C, Wöstmann B (2013) Accuracy of digital and conventional impression techniques and workflow. Clin Oral Investig 17(7):1759–1764

    Article  PubMed  Google Scholar 

  42. Keul C, Stawarczyk B, Erdelt KJ, Beuer F, Edelhoff D, Güth JF (2014) Fit of 4-unit FDPs made of zirconia and CoCr-alloy after chairside and labside digitalization—a laboratory study. Dent Mater 30(4):400–407

    Article  PubMed  Google Scholar 

  43. Svanborg P, Skjerven H, Carlsson P, Eliasson A, Karlsson S, Ortorp A (2014) Marginal and internal fit of cobalt-chromium fixed dental prostheses generated from digital and conventional impressions. Int J Dent. doi:10.1155/2014/534382 Epub 2014 Mar 3

    PubMed Central  PubMed  Google Scholar 

  44. Lee SJ, Gallucci GO (2014) Digital vs. conventional implant impressions: efficiency outcomes. Clin Oral Implants 24(1):111–115

    Article  Google Scholar 

  45. Gozdowski S, Reich S (2009) A comparison of the fabrication times of all-ceramic partial crowns: Cerec 3D vs IPS Empress. Int J Comput Dent 12(3):279–289

    PubMed  Google Scholar 

  46. Patzelt SB, Lamprinos C, Stampf S, Att W (2014) The time efficiency of intraoral scanner: an in vitro com-parative study. J Am Dent Assoc 145(6):542–551

    Article  PubMed  Google Scholar 

  47. Boening KW, Wolf BH, Schmidt AE, Kästner K, Walter MH (2000) Clinical fit of Procera AllCeram crowns. J Prosthet Dent 84(4):419–424

    Article  PubMed  Google Scholar 

  48. Holmes JE, Sulik WD, Holland GA, Bayne SC (1992) Marginal fit of castable ceramic crowns. J Prosthet Dent 67(5):594–599

    Article  PubMed  Google Scholar 

  49. Jacobs MS, Windeler AS (1991) An investigation of dental luting cement solubility as a function of the marginal gap. J Prosthet Dent 65(3):436–442

    Article  PubMed  Google Scholar 

  50. Hmaidouch R, Neumann R, Mueller WD (2011) Influence of preparation form, luting space setting and cement type on the marginal and internal fit of CAD/CAM crown copings. Int J Comput Dent 14(3):219–226

    PubMed  Google Scholar 

  51. Schweiger J, Beuer F, Edelhoff D (2011) Digital workflow teil 3. Quintessenz Zahntech 37:60–72

    Google Scholar 

  52. Rudolph H, Quaas S, Luthardt RG (2002) Matching point clouds: limits and possibilities. Int J Comput Dent 5(2–3):155–164

    PubMed  Google Scholar 

  53. Ender A, Mehl A (2011) Full arch scans: conventional versus digital impressions—an in-vitro study. Int J Comput Dent 14(1):11–21

    PubMed  Google Scholar 

  54. Quaas S, Loos R, Sporbeck H, Luthardt RG (2005) Analyse des Einflusses der Puderapplikation auf die Genauigkeit optischer Digitalisierungen. Dtsch Zahnärztl Z 60:96–99

    Google Scholar 

  55. Ender A, Mehl A (2013) Influence of scanning strategies on the accuracy of digital intraoral scanning systems. Int J Comput Dent 16(1):11–21

    PubMed  Google Scholar 

  56. Flugge TV, Schlager S, Nelson K, Nahles S, Metzger MC (2013) Precision of intraoral digital dental im- pressions with iTero and extraoral digitization with the iTero and a model scanner. Am J Orthod Dentofac Orthop 144(3):471–478

    Article  Google Scholar 

  57. Laurent M, Scheer P, Dejou J, Laborde G (2008) Clinical evaluation of the marginal fit of cast crowns—validation of the silicone replica method. J Oral Rehabil 35(2):116–122

    Article  PubMed  Google Scholar 

  58. Kohorst P, Brinkmann H, Dittmer MP, Borchers L, Stiesch M (2010) Influence of the veneering process on the marginal fit of zirconia fixed dental prostheses. J Oral Rehabil 37(4):283–291

    Article  PubMed  Google Scholar 

  59. Groten M, Axmann D, Probster L, Weber H (2000) Determination of the minimum number of marginal gap measurements required for practical in-vitro testing. J Prosthet Dent 83(1):p40–p49

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the dental technician Mr. Thomas Jobst, from Zirko-Dent dental laboratory, for his laboratory work. The authors received material support for this study from 3M ESPE.

Conflict of interest

The authors declare no competing interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danush Ahrberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahrberg, D., Lauer, H.C., Ahrberg, M. et al. Evaluation of fit and efficiency of CAD/CAM fabricated all-ceramic restorations based on direct and indirect digitalization: a double-blinded, randomized clinical trial. Clin Oral Invest 20, 291–300 (2016). https://doi.org/10.1007/s00784-015-1504-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-015-1504-6

Keywords

Navigation