Skip to main content

Advertisement

Log in

In vitro evaluation of marginal and internal adaptation of class II CAD/CAM ceramic restorations with different resinous bases and interface treatments

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

This in vitro study evaluated the influence of different composite bases and surface treatments on marginal and internal adaptation of class II CEREC CAD/CAM ceramic inlays, before and after simulated occlusal loading.

Methods

Thirty-two IPS Empress CAD class II inlays (MO or OD) (n = 8/group) were placed on third molars, with margins 1 mm below the cementum-enamel junction (CEJ), following different cavity treatments. These treatments were non-liner (control group), a flowable composite liner (Premise flow) sandblasted or treated with soft air abrasion and a restorative composite liner (Premise) sandblasted. The restorations were then luted with Premise. All specimens were submitted to 1,000,000 cycles with a 100-N eccentric load. The tooth restoration margins were analysed semi-quantitatively by SEM pre- and post-loading. The internal adaptation was also evaluated after test completion.

Results

The percentage of satisfactory marginal adaptation varied from 75 to 87 % pre-loading and 62 to 72 % post-loading in occlusal enamel, from 71 to 83 % pre-loading and 52 to 63 % post-loading in proximal enamel, and from 68 to 88 % pre-loading and 43 to 66 % post-loading in cervical dentin. There were no significant differences among groups. The percentages of satisfactory tooth–composite internal adaptation varied from 81 to 98 % in occlusal dentin, from 63 to 90 % in axial dentin, and from 71 to 84 % in cervical dentin without any statistical difference.

Conclusions

The results of the present study support the use of flowable or restorative composites as a liner underneath ceramic CAD/CAM inlays, producing marginal and internal adaptation which is not different from restorations placed directly on dentin. Soft air abrasion proved not to be different from sandblasting for treating cavities before cementation.

Clinical relevance

The results of this in vitro test validate the increasing use of a flowable base/liner underneath CAD/CAM ceramic inlays to optimise tissue conservation and clinical procedures; in this case, soft air abrasion is recommended as a pre-cementation step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hickel R, Manhart J (2001) Longevity of restorations in posterior teeth and reasons for failure. J Adhes Dent 3(1):45–64

    PubMed  Google Scholar 

  2. Manhart J, Chen H, Hamm G, Hickel R (2004) Buonocore Memorial Lecture. Review of the clinical survival of direct and indirect restorations in posterior teeth of the permanent dentition. Oper Dent 29(5):481–508

    PubMed  Google Scholar 

  3. Lu H, Stansbury JW, Dickens SH, Eichmiller FC, Bowman CN (2004) Probing the origins and control of shrinkage stress in dental resin-composites: I. Shrinkage stress characterization technique. J Mater Sci Mater Med 15(10):1097–1103

    Article  PubMed  Google Scholar 

  4. Peutzfeldt A, Asmussen E (2004) Determinants of in vitro gap formation of resin composites. J Dent 32(2):109–115

    Article  PubMed  Google Scholar 

  5. Stavridakis MM, Lutz F, Johnston WM, Krejci I (2003) Linear displacement and force induced by polymerization shrinkage of resin-based restorative materials. Am J Dent 16(6):431–438

    PubMed  Google Scholar 

  6. Roulet JF, Salchow B, Wald M (1991) Margin analysis of posterior composites in vivo. Dent Mater 7(1):44–49

    Article  PubMed  Google Scholar 

  7. Davidson (1997) Factor influencing the quality of composite restorations; theory and practice. Bologna Int Symp 87–93

  8. Dietschi D, Scampa U, Campanile G, Holz J (1995) Marginal adaptation and seal of direct and indirect Class II composite resin restorations: an in vitro evaluation. Quintessence Int 26(2):127–138

    PubMed  Google Scholar 

  9. Mehl A, Kunzelmann KH, Folwaczny M, Hickel R (2004) Stabilization effects of CAD/CAM ceramic restorations in extended MOD cavities. J Adhes Dent 6(3):239–245

    PubMed  Google Scholar 

  10. Federlin M, Sipos C, Hiller KA, Thonemann B, Schmalz G (2005) Partial ceramic crowns. Influence of preparation design and luting material on margin integrity—a scanning electron microscopic study. Clin Oral Investig 9(1):8–17

    Article  PubMed  Google Scholar 

  11. Krifka S, Anthofer T, Fritzsch M, Hiller KA, Schmalz G, Federlin M (2009) Ceramic inlays and partial ceramic crowns: influence of remaining cusp wall thickness on the marginal integrity and enamel crack formation in vitro. Oper Dent 34(1):32–42

    Article  PubMed  Google Scholar 

  12. Dietschi D, Argente A, Krejci I (2013) Mandikos M In vitro performance of class I and II composite restorations: a literature review on nondestructive laboratory trials-part I. Oper Dent 38(5):E166–E181

    Article  PubMed  Google Scholar 

  13. Dietschi D, Argente A, Krejci I (2013) Mandikos M In vitro performanceof class I and II composite restorations: a literature review on nondestructive laboratory trials-part II. Oper Dent 38(5):E182–E200

    Article  PubMed  Google Scholar 

  14. Belli S, Inokoshi S, Ozer F, Pereira PN, Ogata M, Tagami J (2001) The effect of additional enamel etching and a flowable composite to the interfacial integrity of Class II adhesive composite restorations. Oper Dent 26(1):70–75

    PubMed  Google Scholar 

  15. Dietschi D, Bindi G, Krejci I, Davidson C (2002) Marginal and internal adaptation of stratified compomer-composite Class II restorations. Oper Dent 27(5):500–509

    PubMed  Google Scholar 

  16. Peutzfeldt A, Asmussen E (2002) Composite restorations: influence of flowable and self-curing resin composite linings on microleakage in vitro. Oper Dent 27(6):569–575

    PubMed  Google Scholar 

  17. Malmstrom HS, Schlueter M, Roach T, Moss ME (2002) Effect of thickness of flowable resins on marginal leakage in class II composite restorations. Oper Dent 27(4):373–380

    PubMed  Google Scholar 

  18. Shortall AC, Baylis RL, Baylis MA, Grundy JR (1989) Marginal seal comparisons between resin-bonded Class II porcelain inlays, posterior composite restorations, and direct composite resin inlays. Int J Prosthodont 2(3):217–223

    PubMed  Google Scholar 

  19. Dietschi D SR (1997) Adhesive metal free restorations: current concepts for the esthetic treatment of posterior teeth

  20. Iida K, Inokoshi S, Kurosaki N (2003) Interfacial gaps following ceramic inlay cementation vs direct composites. Oper Dent 28(4):445–452

    PubMed  Google Scholar 

  21. Dietschi D, Spreafico R (1998) Current clinical concepts for adhesive cementation of tooth-colored posterior restorations. Pract Periodontics Aesthet Dent 10(1):47–54, 22

    PubMed  Google Scholar 

  22. Dietschi D, Olsburgh S, Krejci I, Davidson C (2003) In vitro evaluation of marginal and internal adaptation after occlusal stressing of indirect class II composite restorations with different resinous bases. Eur J Oral Sci 111(1):73–80

    Article  PubMed  Google Scholar 

  23. Inokoshi S, Shimada Y, Fujitani M, Otsuki M, Shono T, Onoe N, Morigami M, Takatsu T (1995) Monkey pulpal response to adhesively luted indirect resin composite inlays. Oper Dent 20(3):111–118

    PubMed  Google Scholar 

  24. Inokoshi S, Fujitani M, Otsuki M, Sonoda H, Kitasako Y, Shimada Y, Tagami J (1998) Monkey pulpal responses to conventional and adhesive luting cements. Oper Dent 23(1):21–29

    PubMed  Google Scholar 

  25. Lutz E, Krejci I, Oldenburg TR (1986) Elimination of polymerization stresses at the margins of posterior composite resin restorations: a new restorative technique. Quintessence Int 17(12):777–784

    PubMed  Google Scholar 

  26. Friedl KH, Schmalz G, Hiller KA, Mortazavi F (1997) Marginal adaptation of composite restorations versus hybrid ionomer/composite sandwich restorations. Oper Dent 22(1):21–29

    PubMed  Google Scholar 

  27. Ausiello P, Rengo S, Davidson CL, Watts DC (2004) Stress distributions in adhesively cemented ceramic and resin-composite Class II inlay restorations: a 3D-FEA study. Dent Mater 20(9):862–872, 28

    Article  PubMed  Google Scholar 

  28. Magne P, Knezevic A (2009) Simulated fatigue resistance of composite resin versus porcelain CAD/CAM overlay restorations on endodontically treated molars. Quintessence Int 40(2):125–133

    PubMed  Google Scholar 

  29. Scott JA, Strang R, Saunders WP (1992) The plane of fracture and shear bond strength of three composite inlay systems. Dent Mater 8(3):208–210

    Article  PubMed  Google Scholar 

  30. Krejci I, Fullemann J, Lutz F (1994) Clinical and long-term scanning electron microscopic studies of composite inlays. Schweiz Monatsschr Zahnmed 104(11):1351–1356

    PubMed  Google Scholar 

  31. Rodrigues SA Jr, Ferracane JL, Della Bona A (2009) Influence of surface treatments on the bond strength of repaired resin composite restorative materials. Dent Mater 25(4):442–451

    Article  PubMed  Google Scholar 

  32. Rocca GT, Gregor L, Sandoval MJ, Krejci I, Dietschi D (2012) In vitro evaluation of marginal and internal adaptation after occlusal stressing of indirect class II composite restorations with different resinous bases and interface treatments. “Post-fatigue adaptation of indirect composite restorations”. Clin Oral Investig 16(5):1385–1393

    Article  PubMed  Google Scholar 

  33. Frankenberger R, Petschelt A, Kramer N (2000) Leucite-reinforced glass ceramic inlays and onlays after six years: clinical behavior. Oper Dent 25(6):459–465

    PubMed  Google Scholar 

  34. Hayashi M, Wilson NH, Yeung CA, Worthington HV (2003) Systematic review of ceramic inlays. Clin Oral Investig 7(1):8–19

    PubMed  Google Scholar 

  35. Molin MK, Karlsson SL (2000) A randomized 5-year clinical evaluation of 3 ceramic inlay systems. Int J Prosthodont 13(3):194–200

    PubMed  Google Scholar 

  36. Thordrup M, Isidor F, Horsted-Bindslev P (2001) A 5-year clinical study of indirect and direct resin composite and ceramic inlays. Quintessence Int 32(3):199–205

    PubMed  Google Scholar 

  37. Posselt A, Kerschbaum T (2003) Longevity of 2328 chairside Cerec inlays and onlays. Int J Comput Dent 6(3):231–248

    PubMed  Google Scholar 

  38. Sjogren G, Molin M, van Dijken JW (2004) A 10-year prospective evaluation of CAD/CAM-manufactured (Cerec) ceramic inlays cemented with a chemically cured or dual-cured resin composite. Int J Prosthodont 17(2):241–246

    PubMed  Google Scholar 

  39. Kramer N, Frankenberger R (2005) Clinical performance of bonded leucite-reinforced glass ceramic inlays and onlays after eight years. Dent Mater 21(3):262–271

    Article  PubMed  Google Scholar 

  40. Krejci I, Heinzmann JL, Lutz F (1990) The wear on enamel, amalgam and their enamel antagonists in a computer-controlled mastication simulator. Schweiz Monatsschr Zahnmed 100(11):1285–1291

    PubMed  Google Scholar 

  41. Dietschi (2003) Evaluation of marginal and internal adaptation of adhesive class II restorations. Dissertation, ACTA University of Amsterdam

  42. Ciucchi B, Bouillaguet S, Holz J, Pashley D (1995) Dentinal fluid dynamics in human teeth, in vivo. J Endod 21(4):191–194

    Article  PubMed  Google Scholar 

  43. Krejci I, Reich T, Lutz F, Albertoni M (1990) An in vitro test procedure for evaluating dental restoration systems. 1. A computer-controlled mastication simulator. Schweiz Monatsschr Zahnmed 100(8):953–960

    PubMed  Google Scholar 

  44. Luescher B, Lutz F, Ochsenbein H, Muhlemann HR (1977) Microleakage and marginal adaptation in conventional and adhesive class II restoration. J Prosthet Dent 37(3):300–309

    Article  PubMed  Google Scholar 

  45. Roulet JF (1990) Degradation of dental polymers. 108–110

  46. Dietschi D, Moor L (1999) Evaluation of the marginal and internal adaptation of different ceramic and composite inlay systems after an in vitro fatigue test. J Adhes Dent 1(1):41–56

    PubMed  Google Scholar 

  47. Manhart J, Schmidt M, Chen HY, Kunzelmann KH, Hickel R (2001) Marginal quality of tooth-colored restorations in class II cavities after artificial aging. Oper Dent 26(4):357–366

    PubMed  Google Scholar 

  48. Frankenberger R, Lohbauer U, Schaible RB, Nikolaenko SA, Naumann M (2008) Luting of ceramic inlays in vitro: marginal quality of self-etch and etch-and-rinse adhesives versus self-etch cements. Dent Mater 24(2):185–191

    Article  PubMed  Google Scholar 

  49. Frankenberger R, Kramer N, Appelt A, Lohbauer U, Naumann M, Roggendorf MJ (2011) Chairside vs. labside ceramic inlays: effect of temporary restoration and adhesive luting on enamel cracks and marginal integrity. Dent Mater 27(9):892–898

    Article  PubMed  Google Scholar 

  50. Zaruba M, Gohring TN, Wegehaupt FJ, Attin T (2012) Influence of a proximal margin elevation technique on marginal adaptation of ceramic inlays. Acta Odontol Scand

  51. Bortolotto T, Onisor I, Krejci I (2007) Proximal direct composite restorations and chairside CAD/CAM inlays: marginal adaptation of a two-step self-etch adhesive with and without selective enamel conditioning. Clin Oral Investig 11(1):35–43

    Article  PubMed  Google Scholar 

  52. Rocca GT, Krejci I (2007) Bonded indirect restorations for posterior teeth: from cavity preparation to provisionalization. Quintessence Int 38(5):371–379

    PubMed  Google Scholar 

  53. Magne PaS R (2012) Deep margin elevation: a paradigm shift. Am J Esthet Dent 2:86–96

    Google Scholar 

  54. Kemp-Scholte CM, Davidson CL (1990) Marginal integrity related to bond strength and strain capacity of composite resin restorative systems. J Prosthet Dent 64(6):658–664

    Article  PubMed  Google Scholar 

  55. Kemp-Scholte CM, Davidson CL (1990) Complete marginal seal of Class V resin composite restorations effected by increased flexibility. J Dent Res 69(6):1240–1243

    Article  PubMed  Google Scholar 

  56. Ausiello P, Apicella A, Davidson CL (2002) Effect of adhesive layer properties on stress distribution in composite restorations—a 3D finite element analysis. Dent Mater 18(4):295–303

    Article  PubMed  Google Scholar 

  57. Chuang SF, Jin YT, Liu JK, Chang CH, Shieh DB (2004) Influence of flowable composite lining thickness on Class II composite restorations. Oper Dent 29(3):301–308

    PubMed  Google Scholar 

  58. Dewaele M, Asmussen E, Devaux J, Leloup G (2006) Class II restorations: influence of a liner with rubbery qualities on the occurrence and size of cervical gaps. Eur J Oral Sci 114(6):535–541

    Article  PubMed  Google Scholar 

  59. Brannstrom M (1966) The hydrodynamics of the dental tubule and pulp fluid: its significance in relation to dentinal sensitivity. Annu Meet Am Inst Oral Biol 23:219

    PubMed  Google Scholar 

  60. Bertschinger C, Paul SJ, Luthy H, Scharer P (1996) Dual application of dentin bonding agents: effect on bond strength. Am J Dent 9(3):115–119

    PubMed  Google Scholar 

  61. Paul SJ, Scharer P (1997) The dual bonding technique: a modified method to improve adhesive luting procedures. Int J Periodontics Restorative Dent 17(6):536–545

    PubMed  Google Scholar 

  62. Dietschi D, Herzfeld D (1998) In vitro evaluation of marginal and internal adaptation of class II resin composite restorations after thermal and occlusal stressing. Eur J Oral Sci 106(6):1033–1042

    Article  PubMed  Google Scholar 

  63. Magne P, Douglas WH (1999) Porcelain veneers: dentin bonding optimization and biomimetic recovery of the crown. Int J Prosthodont 12(2):111–121

    PubMed  Google Scholar 

  64. Magne P, So WS, Cascione D (2007) Immediate dentin sealing supports delayed restoration placement. J Prosthet Dent 98(3):166–174

    Article  PubMed  Google Scholar 

  65. Frankenberger R, Hehn J, Hajto J, Kramer N, Naumann M, Koch A, Roggendorf MJ (2012) Effect of proximal box elevation with resin composite on marginal quality of ceramic inlays in vitro. Clin Oral Investig

  66. Burtscher P (1993) Stability of radicals in cured composite materials. Dent Mater 9(4):218–221

    Article  PubMed  Google Scholar 

  67. Stavridakis MM, Krejci I, Magne P (2005) Immediate dentin sealing of onlay preparations: thickness of pre-cured Dentin Bonding Agent and effect of surface cleaning. Oper Dent 30(6):747–757

    PubMed  Google Scholar 

  68. Rocca GT, Krejci I (2007) Bonded indirect restorations for posterior teeth: the luting appointment. Quintessence Int 38(7):543–553

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of manufacturers which graciously provided all the products tested in the present study.

Conflict of interest

The authors of the manuscript certify that they have no proprietary, financial or any personal interest of any kind in any product or company that is mentioned in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Dietschi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandoval, M.J., Rocca, G.T., Krejci, I. et al. In vitro evaluation of marginal and internal adaptation of class II CAD/CAM ceramic restorations with different resinous bases and interface treatments. Clin Oral Invest 19, 2167–2177 (2015). https://doi.org/10.1007/s00784-015-1449-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-015-1449-9

Keywords

Navigation