Skip to main content

Advertisement

Log in

Influence of irradiation time on subsurface degree of conversion and microhardness of high-viscosity bulk-fill resin composites

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

To evaluate the influence of irradiation time on degree of conversion (DC) and microhardness of high-viscosity bulk-fill resin composites in depths up to 6 mm.

Materials and methods

Four bulk-fill materials (Tetric EvoCeram Bulk Fill—TECBF; x-tra fil—XF; QuixFil—QF; SonicFill—SF) and one conventional nano-hybrid resin composite (Tetric EvoCeram—TEC) were irradiated for 10, 20, or 30 s at 1,170 mW/cm2. DC and Knoop microhardness (KHN) were recorded after 24-h dark storage at five depths: 0.1, 2, 4, 5, and 6 mm. Data were statistically analyzed using ANOVA and Bonferroni’s post-hoc test (α = 0.05).

Results

With increasing bulk thickness, DC and KHN significantly decreased for TEC. TECBF and SF showed a significant decrease in DC and KHN at 4-mm depth after 10-s irradiation, but no decrease in DC after 30-s irradiation (p > 0.05). XF and QF demonstrated no significant DC decrease at depths up to 6 mm after irradiation of at least 20 s. At 4-mm depth, all materials tested achieved at least 80 % of their maximum DC value, irrespective of irradiation time. However, at the same depth (4 mm), only XF and QF irradiated for 30 s achieved at least 80 % of their maximum KHN value.

Conclusions

Regarding DC, the tested bulk-fill resin composites can be safely used up to at least 4-mm incremental thickness. However, with respect to hardness, only XF and QF achieved acceptable results at 4-mm depth with 30 s of irradiation.

Clinical relevance

Minimum irradiation times stated by the manufacturers cannot be recommended for placement of high-viscosity bulk-fill materials in 4-mm increments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Leprince JG, Palin WM, Hadis MA, Devaux J, Leloup G (2013) Progress in dimethacrylate-based dental composite technology and curing efficiency. Dent Mater 29:139–156

    Article  PubMed  Google Scholar 

  2. Roggendorf MJ, Kramer N, Appelt A, Naumann M, Frankenberger R (2011) Marginal quality of flowable 4-mm base vs. conventionally layered resin composite. J Dent 39:643–647

    Article  PubMed  Google Scholar 

  3. Ferracane JL (2011) Resin composite—state of the art. Dent Mater 27:29–38

    Article  PubMed  Google Scholar 

  4. Flury S, Hayoz S, Peutzfeldt A, Husler J, Lussi A (2012) Depth of cure of resin composites: is the ISO 4049 method suitable for bulk fill materials? Dent Mater 28:521–528

    Article  PubMed  Google Scholar 

  5. Manhart J, Hickel R (2014) Bulk-fill-composites. Modern application technique of direct composites for posterior teeth. Swiss Dent J 124:19–37

    PubMed  Google Scholar 

  6. Bucuta S, Ilie N (2014) Light transmittance and micro-mechanical properties of bulk fill vs. conventional resin based composites. Clin Oral Investig. doi: 10.1007/s00784-013-1177-y

  7. Howard B, Wilson ND, Newman SM, Pfeifer CS, Stansbury JW (2010) Relationships between conversion, temperature and optical properties during composite photopolymerization. Acta Biomater 6:2053–2059

    Article  PubMed Central  PubMed  Google Scholar 

  8. Czasch P, Ilie N (2013) In vitro comparison of mechanical properties and degree of cure of bulk fill composites. Clin Oral Investig 17:227–235

    Article  PubMed  Google Scholar 

  9. Tauböck TT, Feilzer AJ, Buchalla W, Kleverlaan CJ, Krejci I, Attin T (2014) Effect of modulated photo-activation on polymerization shrinkage behavior of dental restorative resin composites. Eur J Oral Sci 122:293–302

    Article  PubMed  Google Scholar 

  10. Ilie N, Hickel R (2011) Investigations on a methacrylate-based flowable composite based on the SDRTM technology. Dent Mater 27:348–355

    Article  PubMed  Google Scholar 

  11. Van Ende A, De Munck J, Van Landuyt KL, Poitevin A, Peumans M, Van Meerbeek B (2013) Bulk-filling of high C-factor posterior cavities: effect on adhesion to cavity-bottom dentin. Dent Mater 29:269–277

    Article  PubMed  Google Scholar 

  12. Finan L, Palin WM, Moskwa N, McGinley EL, Fleming GJ (2013) The influence of irradiation potential on the degree of conversion and mechanical properties of two bulk-fill flowable RBC base materials. Dent Mater 29:906–912

    Article  PubMed  Google Scholar 

  13. Ilie N, Bucuta S, Draenert M (2013) Bulk-fill resin-based composites: an in vitro assessment of their mechanical performance. Oper Dent 38:618–625

    Article  PubMed  Google Scholar 

  14. Alrahlah A, Silikas N, Watts DC (2014) Post-cure depth of cure of bulk fill dental resin-composites. Dent Mater 30:149–154

    Article  PubMed  Google Scholar 

  15. Furness A, Tadros MY, Looney SW, Rueggeberg FA (2014) Effect of bulk/incremental fill on internal gap formation of bulk-fill composites. J Dent 42:439–449

    Article  PubMed  Google Scholar 

  16. Goracci C, Cadenaro M, Fontanive L, Giangrosso G, Juloski J, Vichi A, Ferrari M (2014) Polymerization efficiency and flexural strength of low-stress restorative composites. Dent Mater 30:688–694

    Article  PubMed  Google Scholar 

  17. Yoon TH, Lee YK, Lim BS, Kim CW (2002) Degree of polymerization of resin composites by different light sources. J Oral Rehabil 29:1165–1173

    Article  PubMed  Google Scholar 

  18. Chung KH (1990) The relationship between composition and properties of posterior resin composites. J Dent Res 69:852–856

    Article  PubMed  Google Scholar 

  19. Poskus LT, Placido E, Cardoso PE (2004) Influence of placement techniques on Vickers and Knoop hardness of class II composite resin restorations. Dent Mater 20:726–732

    Article  PubMed  Google Scholar 

  20. Sigusch BW, Pflaum T, Volpel A, Gretsch K, Hoy S, Watts DC, Jandt KD (2012) Resin-composite cytotoxicity varies with shade and irradiance. Dent Mater 28:312–319

    Article  PubMed  Google Scholar 

  21. Miletic V, Santini A (2012) Optimizing the concentration of 2,4,6-trimethylbenzoyldiphenylphosphine oxide initiator in composite resins in relation to monomer conversion. Dent Mater J 31:717–723

    Article  PubMed  Google Scholar 

  22. Turssi CP, Ferracane JL, Vogel K (2005) Filler features and their effects on wear and degree of conversion of particulate dental resin composites. Biomaterials 26:4932–4937

    Article  PubMed  Google Scholar 

  23. Tarle Z, Meniga A, Ristic M, Sutalo J, Pichler G, Davidson CL (1998) The effect of the photopolymerization method on the quality of composite resin samples. J Oral Rehabil 25:436–442

    Article  PubMed  Google Scholar 

  24. Uctasli S, Tezvergil A, Lassila LV, Vallittu PK (2005) The degree of conversion of fiber-reinforced composites polymerized using different light-curing sources. Dent Mater 21:469–475

    Article  PubMed  Google Scholar 

  25. Ferracane JL, Greener EH (1984) Fourier transform infrared analysis of degree of polymerization in unfilled resins—methods comparison. J Dent Res 63:1093–1095

    Article  PubMed  Google Scholar 

  26. Pianelli C, Devaux J, Bebelman S, Leloup G (1999) The micro-Raman spectroscopy, a useful tool to determine the degree of conversion of light-activated composite resins. J Biomed Mater Res 48:675–681

    Article  PubMed  Google Scholar 

  27. Stansbury JW, Dickens SH (2001) Determination of double bond conversion in dental resins by near infrared spectroscopy. Dent Mater 17:71–79

    Article  PubMed  Google Scholar 

  28. Ferracane JL (1985) Correlation between hardness and degree of conversion during the setting reaction of unfilled dental restorative resins. Dent Mater 1:11–14

    Article  PubMed  Google Scholar 

  29. Asmussen E (1982) Restorative resins: hardness and strength vs. quantity of remaining double bonds. Scand J Dent Res 90:484–489

    PubMed  Google Scholar 

  30. Cohen ME, Leonard DL, Charlton DG, Roberts HW, Ragain JC (2004) Statistical estimation of resin composite polymerization sufficiency using microhardness. Dent Mater 20:158–166

    Article  PubMed  Google Scholar 

  31. Soh MS, Yap AU, Siow KS (2003) The effectiveness of cure of LED and halogen curing lights at varying cavity depths. Oper Dent 28:707–715

    PubMed  Google Scholar 

  32. Tarle Z, Meniga A, Ristic M, Sutalo J, Pichler G (1995) Polymerization of composites using pulsed laser. Eur J Oral Sci 103:394–398

    Article  PubMed  Google Scholar 

  33. Rueggeberg FA, Hashinger DT, Fairhurst CW (1990) Calibration of FTIR conversion analysis of contemporary dental resin composites. Dent Mater 6:241–249

    Article  PubMed  Google Scholar 

  34. Tauböck TT, Oberlin H, Buchalla W, Roos M, Attin T (2011) Comparing the effectiveness of self-curing and light curing in polymerization of dual-cured core buildup materials. J Am Dent Assoc 142:950–956

    Article  PubMed  Google Scholar 

  35. Tauböck TT, Buchalla W, Hiltebrand U, Roos M, Krejci I, Attin T (2011) Influence of the interaction of light- and self-polymerization on subsurface hardening of a dual-cured core build-up resin composite. Acta Odontol Scand 69:41–47

    Article  PubMed  Google Scholar 

  36. Polydorou O, Manolakis A, Hellwig E, Hahn P (2008) Evaluation of the curing depth of two translucent composite materials using a halogen and two LED curing units. Clin Oral Investig 12:45–51

    Article  PubMed  Google Scholar 

  37. Cramer NB, Stansbury JW, Bowman CN (2011) Recent advances and developments in composite dental restorative materials. J Dent Res 90:402–416

    Article  PubMed Central  PubMed  Google Scholar 

  38. Rueggeberg FA (2011) State-of-the-art: Dental photocuring—a review. Dent Mater 27:39–52

    Article  PubMed  Google Scholar 

  39. Leloup G, Holvoet PE, Bebelman S, Devaux J (2002) Raman scattering determination of the depth of cure of light-activated composites: influence of different clinically relevant parameters. J Oral Rehabil 29:510–515

    Article  PubMed  Google Scholar 

  40. Jakubiak J, Allonas X, Fouassier JP, Sionkowska A, Andrzejewska E, Linden LA (2003) Camphorquinone–amines photoinitiating systems for the initiation of free radical polymerization. Polymer 44:5219–5226

    Article  Google Scholar 

  41. Neshchadin D, Rosspeintner A, Griesser M, Lang B, Mosquera-Vazquez S, Vauthey E, Gorelik V, Liska R, Hametner C, Ganster B, Saf R, Moszner N, Gescheidt G (2013) Acylgermanes: photoinitiators and sources for Ge-centered radicals. Insights into their reactivity. J Am Chem Soc 135:17314–17321

    Article  PubMed  Google Scholar 

  42. Leprince JG, Hadis M, Shortall AC, Ferracane JL, Devaux J, Leloup G, Palin WM (2011) Photoinitiator type and applicability of exposure reciprocity law in filled and unfilled photoactive resins. Dent Mater 27:157–164

    Article  PubMed  Google Scholar 

  43. Ogunyinka A, Palin WM, Shortall AC, Marquis PM (2007) Photoinitiation chemistry affects light transmission and degree of conversion of curing experimental dental resin composites. Dent Mater 23:807–813

    Article  PubMed  Google Scholar 

  44. Neumann MG, Schmitt CC, Ferreira GC, Correa IC (2006) The initiating radical yields and the efficiency of polymerization for various dental photoinitiators excited by different light curing units. Dent Mater 22:576–584

    Article  PubMed  Google Scholar 

  45. Decker C (2002) Kinetic study and new applications of UV radiation curing. Macromol Rapid Commun 23:1067–1093

    Article  Google Scholar 

  46. Moszner N, Fischer UK, Ganster B, Liska R, Rheinberger V (2008) Benzoyl germanium derivatives as novel visible light photoinitiators for dental materials. Dent Mater 24:901–907

    Article  PubMed  Google Scholar 

  47. Tauböck TT, Bortolotto T, Buchalla W, Attin T, Krejci I (2010) Influence of light-curing protocols on polymerization shrinkage and shrinkage force of a dual-cured core build-up resin composite. Eur J Oral Sci 118:423–429

    Article  PubMed  Google Scholar 

  48. Scotti N, Venturello A, Migliaretti G, Pera F, Pasqualini D, Geobaldo F, Berutti E (2011) New-generation curing units and short irradiation time: the degree of conversion of microhybrid composite resin. Quintessence Int 42:e89–95

    PubMed  Google Scholar 

  49. Yap AU (2000) Effectiveness of polymerization in composite restoratives claiming bulk placement: impact of cavity depth and exposure time. Oper Dent 25:113–120

    PubMed  Google Scholar 

  50. Azzopardi N, Moharamzadeh K, Wood DJ, Martin N, van Noort R (2009) Effect of resin matrix composition on the translucency of experimental dental composite resins. Dent Mater 25:1564–1568

    Article  PubMed  Google Scholar 

  51. Garcia D, Yaman P, Dennison J, Neiva G (2014) Polymerization shrinkage and depth of cure of bulk fill flowable composite resins. Oper Dent 39:441–448

    Article  PubMed  Google Scholar 

  52. Garoushi S, Sailynoja E, Vallittu PK, Lassila L (2013) Physical properties and depth of cure of a new short fiber reinforced composite. Dent Mater 29:835–841

    Article  PubMed  Google Scholar 

  53. Truffier-Boutry D, Demoustier-Champagne S, Devaux J, Biebuyck JJ, Mestdagh M, Larbanois P, Leloup G (2006) A physico-chemical explanation of the post-polymerization shrinkage in dental resins. Dent Mater 22:405–412

    Article  PubMed  Google Scholar 

  54. Price RB, Whalen JM, Price TB, Felix CM, Fahey J (2011) The effect of specimen temperature on the polymerization of a resin-composite. Dent Mater 27:983–989

    Article  PubMed  Google Scholar 

  55. Stansbury JW (2012) Dimethacrylate network formation and polymer property evolution as determined by the selection of monomers and curing conditions. Dent Mater 28:13–22

    Article  PubMed Central  PubMed  Google Scholar 

  56. Skrtic D, Antonucci JM (2007) Effect of chemical structure and composition of the resin phase on vinyl conversion of amorphous calcium phosphate-filled composites. Polym Int 56:497–505

    Article  PubMed Central  PubMed  Google Scholar 

  57. Manhart J, Chen HY, Hickel R (2001) The suitability of packable resin-based composites for posterior restorations. J Am Dent Assoc 132:639–645

    Article  PubMed  Google Scholar 

  58. Rueggeberg FA, Craig RG (1988) Correlation of parameters used to estimate monomer conversion in a light-cured composite. J Dent Res 67:932–937

    Article  PubMed  Google Scholar 

  59. DeWald JP, Ferracane JL (1987) A comparison of four modes of evaluating depth of cure of light-activated composites. J Dent Res 66:727–730

    Article  PubMed  Google Scholar 

  60. Uhl A, Michaelis C, Mills RW, Jandt KD (2004) The influence of storage and indenter load on the Knoop hardness of dental composites polymerized with LED and halogen technologies. Dent Mater 20:21–28

    Article  PubMed  Google Scholar 

  61. Erickson RL, Barkmeier WW (2014) Curing characteristics of a composite. Part 2: the effect of curing configuration on depth and distribution of cure. Dent Mater 30:e134–45

    Article  PubMed  Google Scholar 

  62. Moore BK, Platt JA, Borges G, Chu TM, Katsilieri I (2008) Depth of cure of dental resin composites: ISO 4049 depth and microhardness of types of materials and shades. Oper Dent 33:408–412

    Article  PubMed  Google Scholar 

  63. Soh MS, Yap AU (2004) Influence of curing modes on crosslink density in polymer structures. J Dent 32:321–326

    Article  PubMed  Google Scholar 

  64. Tauböck TT, Zehnder M, Schweizer T, Stark WJ, Attin T, Mohn D (2014) Functionalizing a dentin bonding resin to become bioactive. Dent Mater 30:868–875

    Article  PubMed  Google Scholar 

  65. Marovic D, Panduric V, Tarle Z, Ristic M, Sariri K, Demoli N, Klaric E, Jankovic B, Prskalo K (2013) Degree of conversion and microhardness of dental composite resin materials. J Mol Str 1044:299–302

    Article  Google Scholar 

  66. Frauscher KE, Ilie N (2012) Depth of cure and mechanical properties of nano-hybrid resin-based composites with novel and conventional matrix formulation. Clin Oral Investig 16:1425–1434

    Article  PubMed  Google Scholar 

  67. Leprince JG, Leveque P, Nysten B, Gallez B, Devaux J, Leloup G (2012) New insight into the "depth of cure" of dimethacrylate-based dental composites. Dent Mater 28:512–520

    Article  PubMed  Google Scholar 

  68. Onose H, Sano H, Kanto H, Ando S, Hasuike T (1985) Selected curing characteristics of light-activated composite resins. Dent Mater 1:48–54

    Article  PubMed  Google Scholar 

  69. Bouschlicher MR, Rueggeberg FA, Wilson BM (2004) Correlation of bottom-to-top surface microhardness and conversion ratios for a variety of resin composite compositions. Oper Dent 29:698–704

    PubMed  Google Scholar 

Download references

Acknowledgments

This investigation was supported by the authors’ institutions and the Croatian Science Foundation. Dental companies Ivoclar Vivadent (Schaan, Liechtenstein) and Dentsply DeTrey (Konstanz, Germany) are gratefully acknowledged for the generous donation of the resin composite materials used in this study.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Tarle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarle, Z., Attin, T., Marovic, D. et al. Influence of irradiation time on subsurface degree of conversion and microhardness of high-viscosity bulk-fill resin composites. Clin Oral Invest 19, 831–840 (2015). https://doi.org/10.1007/s00784-014-1302-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-014-1302-6

Keywords

Navigation