Skip to main content

Advertisement

Log in

Effect of polymerisation and ageing on the incremental bond strength of ormocer-based dental materials

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objective

The aim of this study was to investigate the effect of polymerisation and ageing on the incremental bond strength (IBS) and fracture mechanics of experimental and commercial, well established ormocer-based materials.

Methods

An experimental dimethacrylate-diluent-free ormocer was compared with two commercial products (Admira (VOCO); Ceram X Duo (Dentsply)). For Ceram X Duo, the strength between dentin shades (DD) and between dentin and enamel shades (DE) was measured. In order to simulate clinical conditions, when a direct access to the composite surface is impeded, the curing unit was applied at different distances (1, 3 or 6 mm) from the sample's surface. IBS was measured after the samples were stored in distilled water (24 h/37 °C) and after ageing (5,000 cycles between 5 and 55 °C followed by storage (28 days/37 °C) in distilled water). Additionally, the degree of cure (DC) was measured in a thin film (~50 μm). A multivariate analysis, an additional one-way ANOVA with Tukey HSD post hoc test (α = 0.05), an independent t test (α = 0.05), and Weibull statistics were used to assess the results.

Results

After 24 h, the values for IBS were statistically the same. Differences revealed after ageing, whereby the experimental material achieved the significant highest and Admira the lowest results. By evaluating after 24 h and after ageing, the experimental material obtained the smallest Weibull modulus “m”. The predominant breaking mechanism is cohesive, even though the number decreases in favour for the mixture and adhesive fractures after ageing. Clear differences arose with regard to DC. The experimental material reached considerably lower values (31.9–33.2 %) unlike Ceram X Duo (45.6–48.3 %) and Admira (52.9–58.8 %).

Conclusions

The IBS and the DC are far more dependent on the parameter filler volume percent and material than on the polymerisation distance.

Clinical significance

A dimethacrylate-diluent-free ormocer matrix offers a better stability opposite ageing but achieves a lower DC and reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Moszner N, Gianasmidis A, Klapdohr S, Fischer UK, Rheinberger V (2008) Sol–gel materials 2. Light-curing dental composites based on ormocers of cross-linking alkoxysilane methacrylates and further nano-components. Dent Mater 24(6):851–856. doi:10.1016/j.dental.2007.10.004

    Article  PubMed  Google Scholar 

  2. Goel VK KS, Gurusami S, Chen RC (1992) Effect of cavity depth on stresses in a restored tooth. J Prosthet Dent 67:174

    Article  PubMed  Google Scholar 

  3. Ilie N (2011) Resin composite restorative materials. Aust Dent J 56:1–8

    Article  Google Scholar 

  4. Tagtekin DA, Yanikoglu FC, Bozkurt FO, Kologlu B, Sur H (2004) Selected characteristics of an Ormocer and a conventional hybrid resin composite. Dent Mater 20(5):487–497. doi:10.1016/j.dental.2003.06.004

    Article  PubMed  Google Scholar 

  5. Yap AU, Tan CH, Chung SM (2004) Wear behavior of new composite restoratives. Oper Dent 29(3):269–274

    PubMed  Google Scholar 

  6. Cattani-Lorente MBS, Godin CH, Meyer JM (2001) Polymerization shrinkage of Ormocer based dental restorative composites. Eur Cell Mater 1:25–26

    Google Scholar 

  7. Ilie N, Hickel R (2009) Investigations on mechanical behaviour of dental composites. Clin Oral Investig 13(4):485–487. doi:10.1007/s00784-009-0274-4

    Article  Google Scholar 

  8. Leprince J, Palin WM, Mullier T, Devaux J, Vreven J, Leloup G (2010) Investigating filler morphology and mechanical properties of new low-shrinkage resin composite types. J Oral Rehabil 37(5):364–376. doi:10.1111/j.1365-2842.2010.02066.x

    Article  PubMed  Google Scholar 

  9. Yap AU, Soh MS (2004) Post-gel polymerization contraction of "low shrinkage" composite restoratives. Oper Dent 29(2):182–187

    PubMed  Google Scholar 

  10. Rosin C, Arana-Chavez VE, Netto NG, Luz MA (2005) Effects of cleaning agents on bond strength to dentin. Braz Oral Res 19(2):127–133

    Article  PubMed  Google Scholar 

  11. Al-Hiyasat AS, Darmani H, Milhem MM (2005) Cytotoxicity evaluation of dental resin composites and their flowable derivatives. Clin Oral Investig 9(1):21–25. doi:10.1007/s00784-004-0293-0

    Article  PubMed  Google Scholar 

  12. Brunthaler A, Konig F, Lucas T, Sperr W, Schedle A (2003) Longevity of direct resin composite restorations in posterior teeth. Clin Oral Investig 7(2):63–70. doi:10.1007/s00784-003-0206-7

    Article  PubMed  Google Scholar 

  13. Fagundes TC, Barata TJ, Carvalho CA, Franco EB, van Dijken JW, Navarro MF (2009) Clinical evaluation of two packable posterior composites: a five-year follow-up. J Am Dent Assoc 140(4):447–454

    PubMed  Google Scholar 

  14. van Dijken JW, Pallesen U (2010) Fracture frequency and longevity of fractured resin composite, polyacid-modified resin composite, and resin-modified glass ionomer cement class IV restorations: an up to 14years of follow-up. Clin Oral Investig 14(2):217–222. doi:10.1007/s00784-009-0287-z

    Article  PubMed  Google Scholar 

  15. Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech 18:290–293

    Google Scholar 

  16. Soo PP, Green BM, Sondhi A (2009) Effects of oxygen inhibition in indirect bonding with a hydrophilic adhesive. Am J Orthod Dentofacial Orthop 135(2):214–221. doi:10.1016/j.ajodo.2007.03.037

    Article  PubMed  Google Scholar 

  17. Finger WJ, Lee KS, Podszun W (1996) Monomers with low oxygen inhibition as enamel/dentin adhesives. Dent Mater 12(4):256–261

    Article  PubMed  Google Scholar 

  18. Vankerckhoven H, Lambrechts P, van Beylen M, Davidson CL, Vanherle G (1982) Unreacted methacrylate groups on the surfaces of composite resins. J Dent Res 61(6):791–795

    Article  PubMed  Google Scholar 

  19. Rueggeberg FA, Margeson DH (1990) The effect of oxygen inhibition on an unfilled/filled composite system. J Dent Res 69(10):1652–1658

    Article  PubMed  Google Scholar 

  20. Burtscher P (1993) Stability of radicals in cured composite materials. Dent Mater 9(4):218–221

    Article  PubMed  Google Scholar 

  21. Kim JS, Choi YH, Cho BH, Son HH, Lee IB, Um CM, Kim CK (2006) Effect of light-cure time of adhesive resin on the thickness of the oxygen-inhibited layer and the microtensile bond strength to dentin. J Biomed Mater Res B Appl Biomater 78(1):115–123. doi:10.1002/jbm.b.30463

    PubMed  Google Scholar 

  22. Truffier-Boutry D, Place E, Devaux J, Leloup G (2003) Interfacial layer characterization in dental composite. J Oral Rehabil 30(1):74–77

    Article  PubMed  Google Scholar 

  23. Velazquez E, Vaidyanathan J, Vaidyanathan TK, Houpt M, Shey Z, Von Hagen S (2003) Effect of primer solvent and curing mode on dentin shear bond strength and interface morphology. Quintessence Int 34(7):548–555

    PubMed  Google Scholar 

  24. Dall'Oca S, Papacchini F, Goracci C, Cury AH, Suh BI, Tay FR, Polimeni A, Ferrari M (2007) Effect of oxygen inhibition on composite repair strength over time. J Biomed Mater Res B Appl Biomater 81(2):493–498. doi:10.1002/jbm.b.30689

    PubMed  Google Scholar 

  25. Ghivari S, Chandak M, Manvar N (2010) Role of oxygen inhibited layer on shear bond strength of composites. J Conserv Dent 13(1):39–41. doi:10.4103/0972-0707.62635

    Article  PubMed  Google Scholar 

  26. Shawkat ES, Shortall AC, Addison O, Palin WM (2009) Oxygen inhibition and incremental layer bond strengths of resin composites. Dent Mater 25(11):1338–1346. doi:10.1016/j.dental.2009.06.003

    Article  PubMed  Google Scholar 

  27. Eliades GC, Caputo AA (1989) The strength of layering technique in visible light-cured composites. J Prosthet Dent 61(1):31–38

    Article  PubMed  Google Scholar 

  28. Ferracane JL (2006) Hygroscopic and hydrolytic effects in dental polymer networks. Dent Mater 22(3):211–222. doi:10.1016/j.dental.2005.05.005

    Article  PubMed  Google Scholar 

  29. Polydorou O, Konig A, Hellwig E, Kummerer K (2009) Long-term release of monomers from modern dental-composite materials. Eur J Oral Sci 117(1):68–75. doi:10.1111/j.1600-0722.2008.00594.x

    Article  PubMed  Google Scholar 

  30. Cavalcante LM, Schneider LF, Silikas N, Watts DC (2011) Surface integrity of solvent-challenged ormocer-matrix composite. Dent Mater 27(2):173–179. doi:10.1016/j.dental.2010.10.002

    Article  PubMed  Google Scholar 

  31. Emami N, Soderholm KJ (2003) How light irradiance and curing time affect monomer conversion in light-cured resin composites. Eur J Oral Sci 111(6):536–542

    Article  PubMed  Google Scholar 

  32. Imazato S, McCabe JF, Tarumi H, Ehara A, Ebisu S (2001) Degree of conversion of composites measured by DTA and FTIR. Dent Mater 17(2):178–183

    Article  PubMed  Google Scholar 

  33. Shin WS, Li XF, Schwartz B, Wunder SL, Baran GR (1993) Determination of the degree of cure of dental resins using Raman and FT-Raman spectroscopy. Dent Mater 9(5):317–324

    Article  PubMed  Google Scholar 

  34. Lohbauer U, Rahiotis C, Kramer N, Petschelt A, Eliades G (2005) The effect of different light-curing units on fatigue behavior and degree of conversion of a resin composite. Dent Mater 21(7):608–615. doi:10.1016/j.dental.2004.07.020

    Article  PubMed  Google Scholar 

  35. Emami N, Soderholm KJ (2005) Influence of light-curing procedures and photo-initiator/co-initiator composition on the degree of conversion of light-curing resins. J Mater Sci Mater Med 16(1):47–52. doi:10.1007/s10856-005-6445-1

    Article  PubMed  Google Scholar 

  36. Silikas N, Eliades G, Watts DC (2000) Light intensity effects on resin-composite degree of conversion and shrinkage strain. Dent Mater 16(4):292–296

    Article  PubMed  Google Scholar 

  37. Ilie N, Hickel R (2006) Silorane-based dental composite: behavior and abilities. Dent Mater J 25(3):445–454

    Article  PubMed  Google Scholar 

  38. Masouras K, Akhtar R, Watts DC, Silikas N (2008) Effect of filler size and shape on local nanoindentation modulus of resin-composites. J Mater Sci Mater Med 19(12):3561–3566. doi:10.1007/s10856-008-3520-4

    Article  PubMed  Google Scholar 

  39. Papacchini F, Toledano M, Monticelli F, Osorio R, Radovic I, Polimeni A, Garcia-Godoy F, Ferrari M (2007) Hydrolytic stability of composite repair bond. Eur J Oral Sci 115(5):417–424. doi:10.1111/j.1600-0722.2007.00475.x

    Article  PubMed  Google Scholar 

  40. Ilie N, Hickel R (2009) Macro-, micro- and nano-mechanical investigations on silorane and methacrylate-based composites. Dent Mater 25(6):810–819. doi:10.1016/j.dental.2009.02.005

    Article  PubMed  Google Scholar 

  41. Soderholm KJ (1981) Degradation of glass filler in experimental composites. J Dent Res 60(11):1867–1875

    Article  PubMed  Google Scholar 

  42. Calais JG, Soderholm KJ (1988) Influence of filler type and water exposure on flexural strength of experimental composite resins. J Dent Res 67(5):836–840

    Article  PubMed  Google Scholar 

  43. Ferracane JL, Berge HX (1995) Fracture toughness of experimental dental composites aged in ethanol. J Dent Res 74(7):1418–1423

    Article  PubMed  Google Scholar 

  44. Ferracane JL, Berge HX, Condon JR (1998) In vitro aging of dental composites in water–effect of degree of conversion, filler volume, and filler/matrix coupling. J Biomed Mater Res 42(3):465–472. doi:10.1002/(SICI)1097-4636(19981205)42:3<465::AID-JBM17>3.0.CO;2-F

    Article  PubMed  Google Scholar 

  45. Ferracane JL, Marker VA (1992) Solvent degradation and reduced fracture toughness in aged composites. J Dent Res 71(1):13–19

    Article  PubMed  Google Scholar 

  46. Pilliar RM, Smith DC, Maric B (1986) Fracture toughness of dental composites determined using the short-rod fracture toughness test. J Dent Res 65(11):1308–1314

    Article  PubMed  Google Scholar 

  47. Hahnel S, Henrich A, Burgers R, Handel G, Rosentritt M (2010) Investigation of mechanical properties of modern dental composites after artificial aging for one year. Oper Dent 35(4):412–419

    Article  PubMed  Google Scholar 

  48. Malacarne J, Carvalho RM, de Goes MF, Svizero N, Pashley DH, Tay FR, Yiu CK, Carrilho MR (2006) Water sorption/solubility of dental adhesive resins. Dent Mater 22(10):973–980. doi:10.1016/j.dental.2005.11.020

    Article  PubMed  Google Scholar 

  49. Ito S, Hashimoto M, Wadgaonkar B, Svizero N, Carvalho RM, Yiu C, Rueggeberg FA, Foulger S, Saito T, Nishitani Y, Yoshiyama M, Tay FR, Pashley DH (2005) Effects of resin hydrophilicity on water sorption and changes in modulus of elasticity. Biomaterials 26(33):6449–6459. doi:10.1016/j.biomaterials.2005.04.052

    Article  PubMed  Google Scholar 

  50. Glenn JF (1979) Compatibility of various materials with oral tissues. I: The components in composite restorations. Comments on Dr. Bowen's presentation. J Dent Res 58(5):1504–1506

    Article  PubMed  Google Scholar 

  51. Beatty MW, Swartz ML, Moore BK, Phillips RW, Roberts TA (1993) Effect of crosslinking agent content, monomer functionality, and repeat unit chemistry on properties of unfilled resins. J Biomed Mater Res 27(3):403–413. doi:10.1002/jbm.820270314

    Article  PubMed  Google Scholar 

  52. Tezvergil-Mutluay A, Lassila LV, Vallittu PK (2008) Incremental layers bonding of silorane composite: the initial bonding properties. J Dent 36(7):560–563. doi:10.1016/j.jdent.2008.03.008

    Article  PubMed  Google Scholar 

  53. Magni E, Ferrari M, Papacchini F, Hickel R, Ilie N (2010) Influence of ozone application on the repair strength of silorane-based and ormocer-based composites. Am J Dent 23(5):260–264

    PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicoleta Ilie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Awad, D., Ilie, N. Effect of polymerisation and ageing on the incremental bond strength of ormocer-based dental materials. Clin Oral Invest 17, 1339–1347 (2013). https://doi.org/10.1007/s00784-012-0831-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-012-0831-0

Keywords

Navigation