Skip to main content

Advertisement

Log in

Radiopacity of dental restorative materials

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

Radiopacity of dental materials enables clinician to radiographically diagnose secondary caries and marginal defects which are usually located on the proximal gingival margin. The aim of this study was to measure the radiopacity of 33 conventional resin composites, 16 flowable resin composites, and 7 glass ionomer cements and to compare the results with the radiopacity values declared by the manufacturers.

Materials and methods

From each restorative material, six 2-mm-thick disk-shaped specimens were fabricated and eight 2-mm-thick sections of teeth were made and used as reference. The material samples and tooth sections were digitally radiographed together with the aluminum stepwedge. Gray values were obtained from the radiographic images and radiopacity values were calculated and statistically analyzed. Post hoc Tukey’s honestly significant difference test was used to calculate significant differences in radiopacity values between materials and reference dentin and enamel values.

Results

The radiopacity values of all 56 restorative materials were above the dentin reference radiopacity value; however, 4 out of 33 conventional composites and 3 out of 16 flowable resin composites had significantly lower radiopacity than enamel (p < 0.05). There were up to 1.53 mm eq Al differences between the measured and the manufacturers’ declared radiopacity values of some materials.

Conclusions

Majority of the materials exceed enamel radiopacity and would not hamper radiographic diagnosis of secondary caries. However, manufacturers’ data are not always reliable.

Clinical relevance

Materials with radiopacity lower than enamel might be misinterpreted as secondary enamel caries on radiographic images, especially when applied as initial increment on the proximal gingival margin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Matteson SR, Phillips C, Kantor ML, Leinedecker T (1989) The effect of lesion size, restorative material, and film speed on the detection of recurrent caries. Oral Surg Oral Med Oral Pathol 68(2):232–237

    Article  PubMed  Google Scholar 

  2. Shah PM, Sidhu SK, Chong BS, Ford TR (1997) Radiopacity of resin-modified glass ionomer liners and bases. J Prosthet Dent 77(3):239–242

    Article  PubMed  Google Scholar 

  3. Willems G, Noack MJ, Inokoshi S, Lambrechts P, Van Meerbeek B, Braem M, Roulet JF, Vanherle G (1991) Radiopacity of composites compared with human enamel and dentine. J Dent 19(6):362–365

    Article  PubMed  Google Scholar 

  4. Mjör IA, Toffenetti F (2000) Secondary caries: a literature review with case reports. Quintessence Int 31(3):165–179

    PubMed  Google Scholar 

  5. Attar N, Tam LE, McComb D (2003) Flow, strength, stiffness and radiopacity of flowable resin composites. J Can Dent Assoc 69(8):516–521

    PubMed  Google Scholar 

  6. Mongkolnam P, Tyas MJ (1994) Light-cured lining materials: a laboratory study. Dent Mater 10(3):196–202

    Article  PubMed  Google Scholar 

  7. Taira M, Toyooka H, Miyawaki H, Yamaki M (1993) Studies on radiopaque composites containing ZrO2–SiO2 fillers prepared by the sol–gel process. Dent Mater 9(3):167–171

    Article  PubMed  Google Scholar 

  8. Oikarinen KS, Nieminen TM, Mäkäräinen H, Pyhtinen J (1993) Visibility of foreign bodies in soft tissue in plain radiographs, computed tomography, magnetic resonance imaging, and ultrasound. An in vitro study. Int J Oral Maxillofac Surg 22(2):119–124

    Article  PubMed  Google Scholar 

  9. Kafas P, Upile T, Angouridakis N, Stavrianos C, Dabarakis N, Jerjes W (2009) Dysaesthesia in the mental nerve distribution triggered by a foreign body: a case report. Cases J 2:169. doi:10.1186/1757-1626-2-169

    Article  PubMed  Google Scholar 

  10. Poorterman JH, Aartman IH, Kalsbeek H (1999) Underestimation of the prevalence of approximal caries and inadequate restorations in a clinical epidemiological study. Community Dent Oral Epidemiol 27(5):331–337

    Article  PubMed  Google Scholar 

  11. Mjör I (1998) The location of clinically diagnosed secondary caries. Quintessence Int 29:313–317

    PubMed  Google Scholar 

  12. Gu S, Rasimick BJ, Deutsch AS, Musikant BL (2006) Radiopacity of dental materials using a digital X-ray system. Dent Mater 22(8):765–770

    Article  PubMed  Google Scholar 

  13. Nomoto R, Mishima A, Kobayashi K, McCabe JF, Darvell BW, Watts DC, Momoi Y, Hirano S (2008) Quantitative determination of radio-opacity: equivalence of digital and film X-ray systems. Dent Mater 24(1):141–147

    Article  PubMed  Google Scholar 

  14. Watts DC, McCabe JF (1999) Aluminium radiopacity standards for dentistry: an international survey. J Dent 27(1):73–78

    Article  PubMed  Google Scholar 

  15. Haiter-Neto F, dos Anjos Pontual A, Frydenberg M, Wenzel A (2007) A comparison of older and newer versions of intraoral digital radiography systems: diagnosing noncavitated proximal carious lesions. J Am Dent Assoc 138(10):1353–1359, quiz 1382–1353

    PubMed  Google Scholar 

  16. Sabbagh J, Vreven J, Leloup G (2004) Radiopacity of resin-based materials measured in film radiographs and storage phosphor plate (Digora). Oper Dent 29(6):677–684

    PubMed  Google Scholar 

  17. Murchison DF, Charlton DG, Moore WS (1999) Comparative radiopacity of flowable resin composites. Quintessence Int 30(3):179–184

    PubMed  Google Scholar 

  18. Sidhu SK, Shah PM, Chong BS, Pitt Ford TR (1996) Radiopacity of resin-modified glass-ionomer restorative cements. Quintessence Int 27(9):639–643

    PubMed  Google Scholar 

  19. Turgut MD, Attar N, Onen A (2003) Radiopacity of direct esthetic restorative materials. Oper Dent 28(5):508–514

    PubMed  Google Scholar 

  20. Ergücü Z, Türkün LS, Onem E, Güneri P (2010) Comparative radiopacity of six flowable resin composites. Oper Dent 35(4):436–440

    Article  PubMed  Google Scholar 

  21. Salzedas LM, Louzada MJ, de Oliveira Filho AB (2006) Radiopacity of restorative materials using digital images. J Appl Oral Sci 14(2):147–152

    Article  PubMed  Google Scholar 

  22. Hara AT, Serra MC, Haiter-Neto F, Rodrigues AL Jr (2001) Radiopacity of esthetic restorative materials compared with human tooth structure. Am J Dent 14(6):383–386

    PubMed  Google Scholar 

  23. Hara AT, Serra MC, Rodrigues Júnior AL (2001) Radiopacity of glass-ionomer/composite resin hybrid materials. Braz Dent J 12(2):85–89

    PubMed  Google Scholar 

  24. Choi KK, Ferracane JL, Hilton TJ, Charlton D (2000) Properties of packable dental composites. J Esthet Dent 12(4):216–226

    Article  PubMed  Google Scholar 

  25. International Standards Organization (2000) ISO 4049:2000, dentistry—polymer-based filling, restorative and luting materials, 3rd edn. ISO, Geneva

    Google Scholar 

  26. Watts DC (1987) Radiopacity vs. composition of some barium and strontium glass composites. J Dent 15(1):38–43

    Article  PubMed  Google Scholar 

  27. Cook WD (1981) An investigation of the radiopacity of composite restorative materials. Aust Dent J 26(2):105–112

    Article  PubMed  Google Scholar 

  28. Bouschlicher MR, Cobb DS, Boyer DB (1999) Radiopacity of compomers, flowable and conventional resin composites for posterior restorations. Oper Dent 24(1):20–25

    PubMed  Google Scholar 

  29. Goshima T, Goshima Y (1990) Radiographic detection of recurrent carious lesions associated with composite restorations. Oral Surg Oral Med Oral Pathol 70(2):236–239

    Article  PubMed  Google Scholar 

  30. Berry HM Jr (1983) Cervical burnout and Mach band: two shadows of doubt in radiologic interpretation of carious lesions. J Am Dent Assoc 106(5):622–625

    PubMed  Google Scholar 

  31. Espelid I, Tveit AB, Erickson RL, Keck SC, Glasspoole EA (1991) Radiopacity of restorations and detection of secondary caries. Dent Mater 7(2):114–117

    Article  PubMed  Google Scholar 

  32. Ferdianakis K (1998) Microleakage reduction from newer esthetic restorative materials in permanent molars. J Clin Pediatr Dent 22(3):221–229

    PubMed  Google Scholar 

  33. Leevailoj C, Cochran MA, Matis BA, Moore BK, Platt JA (2001) Microleakage of posterior packable resin composites with and without flowable liners. Oper Dent 26(3):302–307

    PubMed  Google Scholar 

  34. Malmström HS, Schlueter M, Roach T, Moss ME (2002) Effect of thickness of flowable resins on marginal leakage in class II composite restorations. Oper Dent 27(4):373–380

    PubMed  Google Scholar 

  35. Payne JH 4th (1999) The marginal seal of class II restorations: flowable composite resin compared to injectable glass ionomer. J Clin Pediatr Dent 23(2):123–130

    PubMed  Google Scholar 

  36. Estafan AM, Estafan D (2000) Microleakage study of flowable composite resin systems. Compend Contin Educ Dent 21(9):705–708, 710, 712; quiz 714

    PubMed  Google Scholar 

  37. Jain P, Belcher M (2000) Microleakage of class II resin-based composite restorations with flowable composite in the proximal box. Am J Dent 13(5):235–238

    PubMed  Google Scholar 

  38. Andersson-Wenckert IE, van Dijken JW, Hörstedt P (2002) Modified class II open sandwich restorations: evaluation of interfacial adaptation and influence of different restorative techniques. Eur J Oral Sci 110(3):270–275

    Article  PubMed  Google Scholar 

  39. Warren JA Jr (1986) Glass ionomer: its emerging role as an intermediary dental base. Fla Dent J 57(2):21, 23–24

    PubMed  Google Scholar 

  40. Prévost AP, Forest D, Tanguay R, DeGrandmont P (1990) Radiopacity of glass ionomer dental materials. Oral Surg Oral Med Oral Pathol 70(2):231–235

    Article  PubMed  Google Scholar 

  41. Collares FM, Ogliari FA, Lima GS, Fontanella VR, Piva E, Samuel SM (2010) Ytterbium trifluoride as a radiopaque agent for dental cements. Int Endod J 43(9):792–797. doi:10.1111/j.1365-2591.2010.01746.x

    Article  PubMed  Google Scholar 

  42. de Abreu MJ, Tavares D, Vierira DF (1977) Radiopacity of restorative materials. Oper Dent 2(1):3–16

    PubMed  Google Scholar 

  43. el-Mowafy OM, Brown JW, McComb D (1991) Radiopacity of direct ceramic inlay restoratives. J Dent 19(6):366–368

    Article  PubMed  Google Scholar 

  44. Jandt KD, Al-Jasser AM, Al-Ateeq K, Vowles RW, Allen GC (2002) Mechanical properties and radiopacity of experimental glass–silica–metal hybrid composites. Dent Mater 18(6):429–435

    Article  PubMed  Google Scholar 

  45. Stanford CM, Fan PL, Schoenfeld CM, Knoeppel R, Stanford JW (1987) Radiopacity of light-cured posterior composite resins. J Am Dent Assoc 115(5):722–724

    PubMed  Google Scholar 

  46. Beyer-Olsen EM, Orstavik D (1981) Radiopacity of root canal sealers. Oral Surg Oral Med Oral Pathol 51(3):320–328

    Article  PubMed  Google Scholar 

  47. Tagger M, Katz A (2003) Radiopacity of endodontic sealers: development of a new method for direct measurement. J Endod 29(11):751–755

    Article  PubMed  Google Scholar 

  48. Abreu Júnior M, Tyndall DA, Platin E, Ludlow JB, Phillips C (1999) Two- and three-dimensional imaging modalities for the detection of caries. A comparison between film, digital radiography and tuned aperture computed tomography (TACT). Dentomaxillofac Radiol 28(3):152–157

    Article  PubMed  Google Scholar 

  49. Abreu M Jr, Mol A, Ludlow JB (2001) Performance of RVGui sensor and Kodak Ektaspeed Plus film for proximal caries detection. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 91(3):381–385

    Article  PubMed  Google Scholar 

  50. Borg E, Gröndahl K, Gröndahl HG (1997) Marginal bone level buccal to mandibular molars in digital radiographs from charge-coupled device and storage phosphor systems. An in vitro study. J Clin Periodontol 24(5):306–312

    Article  PubMed  Google Scholar 

  51. Borg E, Källqvist A, Gröndahl K, Gröndahl HG (1998) Film and digital radiography for detection of simulated root resorption cavities. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 86(1):110–114

    Article  PubMed  Google Scholar 

  52. Camps J, Pommel L, Bukiet F (2004) Evaluation of periapical lesion healing by correction of gray values. J Endod 30(11):762–766

    Article  PubMed  Google Scholar 

  53. Hintze H, Wenzel A (2002) Influence of the validation method on diagnostic accuracy for caries. A comparison of six digital and two conventional radiographic systems. Dentomaxillofac Radiol 31(1):44–49

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomaž Hitij.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hitij, T., Fidler, A. Radiopacity of dental restorative materials. Clin Oral Invest 17, 1167–1177 (2013). https://doi.org/10.1007/s00784-012-0797-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-012-0797-y

Keywords

Navigation