Skip to main content

Advertisement

Log in

Comparison of different live/dead stainings for detection and quantification of adherent microorganisms in the initial oral biofilm

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

The aim of the present study was to investigate different fluorescence-based, two-color viability assays for visualization and quantification of initial bacterial adherence and to establish reliable alternatives to the ethidium bromide staining procedure.

Materials and methods

Bacterial colonization was attained in situ on bovine enamel slabs (n = 6 subjects). Five different live/dead assays were investigated (fluorescein diacetate (FDA)/propidium iodide (PI), Syto 9/PI (BacLight®), FDA/Sytox red, Calcein acetoxymethyl (AM)/Sytox red, and carboxyfluorescein diacetate (CFDA)/Sytox red). After 120 min of oral exposure, analysis was performed with an epifluorescence microscope. Validation was carried out, using the colony-forming units for quantification and the transmission electron microscopy for visualization after staining.

Results

The average number of bacteria amounted to 2.9 ± 0.8 × 104 cm−2. Quantification with Syto 9/PI and Calcein AM/Sytox red yielded an almost equal distribution of cells (Syto 9/PI 45 % viable, 55 % avital; Calcein AM/Sytox red 52 % viable, 48 % avital). The live/dead ratio of CFDA/Sytox red and FDA/Sytox red was 3:2. An aberrant dispersal was recorded with FDA/PI (viable 34 %, avital 66 %). The TEM analysis indicated that all staining procedures affect the structural integrity of the bacterial cells considerably.

Conclusion

The following live/dead assays are reliable techniques for differentiation of viable and avital adherent bacteria: BacLight, FDA/Sytox red, Calcein AM/Sytox red, and CFDA/Sytox red. These fluorescence-based techniques are applicable alternatives to toxic and instable conventional assays, such as the staining procedure based on ethidium bromide.

Clinical relevance

Differentiation of viable and avital adherent bacteria offers the possibility for reliable evaluation of different mouth rinses, oral medication, and disinfections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hannig C, Hannig M, Rehmer O, Braun G, Hellwig E, Al-Ahmad A (2007) Fluorescence microscopic visualization and quantification of initial bacterial colonization on enamel in situ. Arch Oral Biol 52:1048–1056

    Article  PubMed  Google Scholar 

  2. Hannig C, Hannig M (2009) Enzyme in der Pellikel—eine Synopsis. Dtsch Zahnärztl Z 64:533–547

    Google Scholar 

  3. Lendenmann U, Grogan J, Oppenheim FG (2000) Saliva and dental pellicle—a review. Adv Dent Res 14:22–28

    Article  PubMed  Google Scholar 

  4. Hannig M, Joiner A (2006) The structure, function and properties of the acquired pellicle. Monogr Oral Sci 19:29–64

    PubMed  Google Scholar 

  5. Bowen WH, Koo H (2011) Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms. Caries Res 45:69–86

    Article  PubMed  Google Scholar 

  6. Hannig M, Hannig C (2007) Der initiale orale Biofilm—pathogen oder protektiv? Oralprophylaxe 29:73–82

    Google Scholar 

  7. Hannig M, Hannig C (2007) Does a dental biofilm, free of bacteria, exist in situ? Parodontologie et Implantologie orale 26:187–200

    Google Scholar 

  8. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE (2005) Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 43:5721–5732

    Article  PubMed  Google Scholar 

  9. Thurnheer T, Gmur R, Giertsen E, Guggenheim B (2001) Automated fluorescent in situ hybridization for the specific detection and quantification of oral streptococci in dental plaque. J Microbiol Methods 44:39–47

    Article  PubMed  Google Scholar 

  10. Al-Ahmad A, Follo M, Selzer AC, Hellwig E, Hannig M, Hannig C (2009) Bacterial colonization of enamel in situ investigated using fluorescence in situ hybridization. J Med Microbiol 58:1359–1366

    Article  PubMed  Google Scholar 

  11. Hannig C, Follo M, Hellwig E, Al-Ahmad A (2010) Visualization of adherent micro-organisms using different techniques. J Med Microbiol 59:1–7

    Article  PubMed  Google Scholar 

  12. Decker EM (2001) The ability of direct fluorescence-based, two-colour assays to detect different physiological states of oral streptococci. Lett Appl Microbiol 33:188–192

    Article  PubMed  Google Scholar 

  13. Netuschil L, Weiger R, Preisler R, Brecx M (1995) Plaque bacteria counts and vitality during chlorhexidine, meridol and listerine mouthrinses. Eur J Oral Sci 103:355–361

    Article  PubMed  Google Scholar 

  14. Netuschil L, Reisch E, Unteregger G, Sculean A, Brecx M (1998) A pilot study of confocal laser scanning microscopy for the assessment of undisturbed dental plaque vitality and topography. Arch Oral Biol 43:277–285

    Article  PubMed  Google Scholar 

  15. Shapiro HM (2008) Flow cytometry of bacterial membrane potential and permeability. Meth Mol Med 142:175–186

    Article  Google Scholar 

  16. Al-Ahmad A, Wiedmann-Al-Ahmad M, Auschill TM, Follo M, Braun G, Hellwig E, Arweiler NB (2008) Effects of commonly used food preservatives on biofilm formation of Streptococcus mutans in vitro. Arch Oral Biol 53:765–772

    Article  PubMed  Google Scholar 

  17. Pan PC, Harper S, Ricci-Nittel D, Lux R, Shi W (2010) In-vitro evidence for efficiency of antimicrobial mouthrinses. J Dent 38:16–20

    Article  Google Scholar 

  18. Netuschil L (1983) Vital staining of plaque microorganisms using fluorescein diacetate and ethidium bromide. Dtsch Zahnarztl Z 38:914–917

    PubMed  Google Scholar 

  19. Breeuwer P, Drocourt JL, Bunschoten N, Zwietering MH, Rombouts FM, Abee T (1995) Characterization of uptake and hydrolysis of fluorescein diacetate and carboxyfluorescein diacetate by intracellular esterases in Saccharomyces cerevisiae, which result in accumulation of fluorescent product. Appl Environ Microbiol 61:1614–1619

    PubMed  Google Scholar 

  20. Guilbault GG, Kramer DN (1965) Fluorometric procedure for measuring the activity of dehydrogenases. Anal Chem 37:1219–1221

    Article  PubMed  Google Scholar 

  21. Peak E, Chalmers IW, Hoffmann KF (2010) Development and validation of a quantitative, high-throughput, fluorescent-based bioassay to detect schistosoma viability. PLoS Negl Trop Dis 4:e759

    Article  PubMed  Google Scholar 

  22. Leeder JS, Dosch HM, Harper PA, Lam P, Spielberg SP (1989) Fluorescence-based viability assay for studies of reactive drug intermediates. Anal Biochem 177:364–372

    Article  PubMed  Google Scholar 

  23. Liminga G, Jonsson B, Nygren P, Larsson R (1999) On the mechanism underlying calcein-induced cytotoxicity. Eur J Pharmacol 383:321–329

    Article  PubMed  Google Scholar 

  24. Wojcik K, Dobrucki JW (2008) Interaction of a DNA intercalator DRAQ5, and a minor groove binder SYTO17, with chromatin in live cells—influence on chromatin organization and histone–DNA interactions. Cytometry A 73:555–562

    PubMed  Google Scholar 

  25. Cassina V, Seruggia D, Beretta GL, Salerno D, Brogioli D, Manzini S, Zunino F, Mantegazza F (2011) Atomic force microscopy study of DNA conformation in the presence of drugs. Eur Biophys J 40:59–68

    Article  PubMed  Google Scholar 

  26. Monaco RR (2010) Capture of a transition state using molecular dynamics: creation of an intercalation site in dsDNA with ethidium cation. J Nucleic Acids 2010

  27. Jr Olmsted, Kearns DR (1977) Mechanism of ethidium bromide fluorescence enhancement on binding to nucleic acids. Biochemistry 16:3647–3654

    Article  PubMed  Google Scholar 

  28. Singer VL, Lawlor TE, Yue S (1999) Comparison of SYBR Green I nucleic acid gel stain mutagenicity and ethidium bromide mutagenicity in the Salmonella/mammalian microsome reverse mutation assay (Ames test). Mutat Res 439:37–47

    Article  PubMed  Google Scholar 

  29. Roth BL, Poot M, Yue ST, Millard PJ (1997) Bacterial viability and antibiotic susceptibility testing with SYTOX green nucleic acid stain. Appl Environ Microbiol 63:2421–2431

    PubMed  Google Scholar 

  30. Stevenson (1978) A case for bacterial dormancy in aquatic systems. Microb Ecol 4:127–133

    Article  Google Scholar 

  31. Kaprelyants AS, Gottschal JC, Kell DB (1993) Dormancy in non-sporulating bacteria. FEMS Microbiol Rev 10:271–285

    PubMed  Google Scholar 

  32. Hannig C, Hannig M (2009) The oral cavity—a key system to understand substratum-dependent bioadhesion on solid surfaces in man. Clin Oral Investig 13:123–139

    Article  PubMed  Google Scholar 

  33. Hannig C, Hoch J, Becker K, Hannig M, Attin T (2005) Lysozyme activity in the initially formed in situ pellicle. Arch Oral Biol 50:821–828

    Article  PubMed  Google Scholar 

  34. Svensäter G, Bergenholtz G (2005) Biofilms in endodontic infections. Endod Top 9:27–36

    Article  Google Scholar 

  35. Oliver JD (1995) The viable but non-culturable state in the human pathogen Vibrio vulnificus. FEMS Microbiol Lett 133:203–208

    Article  PubMed  Google Scholar 

  36. Colwell RR, Brayton PR, Grimes DJ, Roszak DB, Huq SA, Palmer LM (1985) Viable but non-culturable Vibrio cholerae and related pathogens in the environment: implications for release of genetically engineered microorganisms. Nat Biotechnol 3:817–820

    Article  Google Scholar 

  37. Berney M, Hammes F, Bosshard F, Weilenmann HU, Egli T (2007) Assessment and interpretation of bacterial viability by using the LIVE/DEAD BacLight kit in combination with flow cytometry. Appl Environ Microbiol 73:3283–3290

    Article  PubMed  Google Scholar 

  38. Donelli G, Matarrese P, Fiorentini C, Dainelli B, Taraborelli T, Di Campli E, Di Bartolomeo S, Cellini L (1998) The effect of oxygen on the growth and cell morphology of Helicobacter pylori. FEMS Microbiol Lett 168:9–15

    Article  PubMed  Google Scholar 

  39. Signoretto C, Lleo MM, Canepari P (2002) Modification of the peptidoglycan of Escherichia coli in the viable but nonculturable state. Curr Microbiol 44:125–131

    Article  PubMed  Google Scholar 

  40. Guggenheim B, Giertsen E, Schüpbach P, Shapiro S (2001) Validation of an in vitro biofilm model of supragingival plaque. J Dent Res 80:363–370

    Article  PubMed  Google Scholar 

  41. Ceri H, Olson ME, Stremick C, Read RR, Morck D, Buret A (1999) The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 37:1771–1776

    PubMed  Google Scholar 

  42. Davey HM, Hexley P (2011) Red but not dead? Membranes of stressed Saccharomyces cerevisiae are permeable to propidium iodide. Environ Microbiol 13:163–171

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank W. Hoth-Hannig and B. Spitzmüller for the excellent technical support in the laboratory.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Hannig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tawakoli, P.N., Al-Ahmad, A., Hoth-Hannig, W. et al. Comparison of different live/dead stainings for detection and quantification of adherent microorganisms in the initial oral biofilm. Clin Oral Invest 17, 841–850 (2013). https://doi.org/10.1007/s00784-012-0792-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-012-0792-3

Keywords

Navigation