Skip to main content
Log in

An explicit martingale version of the one-dimensional Brenier theorem

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

By investigating model-independent bounds for exotic options in financial mathematics, a martingale version of the Monge–Kantorovich mass transport problem was introduced in (Beiglböck et al. in Finance Stoch. 17:477–501, 2013; Galichon et al. in Ann. Appl. Probab. 24:312–336, 2014). Further, by suitable adaptation of the notion of cyclical monotonicity, Beiglböck and Juillet (Ann. Probab. 44:42–106, 2016) obtained an extension of the one-dimensional Brenier theorem to the present martingale version. In this paper, we complement the previous work by extending the so-called Spence–Mirrlees condition to the case of martingale optimal transport. Under some technical conditions on the starting and the target measures, we provide an explicit characterization of the corresponding optimal martingale transference plans both for the lower and upper bounds. These explicit extremal probability measures coincide with the unique left- and right-monotone martingale transference plans introduced in (Beiglböck and Juillet in Ann. Probab. 44:42–106, 2016). Our approach relies on the (weak) duality result stated in (Beiglböck et al. in Finance Stoch. 17:477–501, 2013), and provides as a by-product an explicit expression for the corresponding optimal semi-static hedging strategies. We finally provide an extension to the multiple marginals case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Acciaio, B., Beiglböck, M., Penkner, F., Schachermayer, W., Temme, J.: A trajectorial interpretation of Doob’s martingale inequalities. Ann. Appl. Probab. 23, 1494–1505 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Acciaio, B., Beiglböck, M., Penkner, F., Schachermayer, W.: A model-free version of the fundamental theorem of asset pricing and the super-replication theorem. Math. Finance 26, 233–251 (2016)

    Article  MATH  Google Scholar 

  3. Beiglböck, M., Henry-Labordère, P., Penkner, F.: Model-independent bounds for option prices—a mass transport approach. Finance Stoch. 17, 477–501 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beiglböck, M., Juillet, N.: On a problem of optimal transport under marginal martingale constraints. Ann. Probab. 44, 42–106 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Breeden, D.T., Litzenberger, R.H.: Prices of state-contingent claims implicit in options prices. J. Bus. 51, 621–651 (1978)

    Article  Google Scholar 

  6. Brenier, Y.: Décomposition polaire et réarrangement monotone des champs de vecteurs. C. R. Acad. Sci. Paris Sci. Paris, Ser. I Math. 305(19), 805–808 (1987)

    MathSciNet  MATH  Google Scholar 

  7. Brown, H., Hobson, D., Rogers, L.C.G.: Robust hedging of barrier options. Math. Finance 11, 285–314 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Carlier, G.: On a class of multidimensional optimal transportation problems. J. Convex Anal. 10, 517–529 (2003)

    MathSciNet  MATH  Google Scholar 

  9. Cousot, L.: Necessary and sufficient conditions for no static arbitrage among European calls. Courant Institute, New York University (2004). Available online at: http://www.en.affi.asso.fr/uploads/Externe/04/CTR_FICHIER_137_1226317002.pdf

  10. Cousot, L.: Conditions on option prices for absence of arbitrage and exact calibration. J. Bank. Finance 31, 3377–3397 (2007)

    Article  Google Scholar 

  11. Cox, A.M.G., Hobson, D., Obłój, J.: Pathwise inequalities for local time: Applications to Skorokhod embeddings and optimal stopping. Ann. Appl. Probab. 18, 1870–1896 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cox, A.M.G., Obłój, J.: Robust hedging of double touch barrier options. SIAM J. Financ. Math. 2, 141–182 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cox, A.M.G., Obłój, J.: Robust pricing and hedging of double no-touch options. Finance Stoch. 15, 573–605 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cox, A.M.G., Wang, J.: Root’s barrier: construction, optimality and applications to variance options. Ann. Appl. Probab. 23, 859–894 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. d’Aspremont, A., El Ghaoui, L.: Static arbitrage bounds on basket option prices. Math. Program., Ser. A 106, 467–489 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Davis, M.H.A., Hobson, D.: The range of traded option prices. Math. Finance 17, 1–14 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Davis, M.H.A., Obłój, J., Raval, V.: Arbitrage bounds for prices of options on realized variance. Math. Finance 24, 821–854 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dolinsky, Y., Soner, H.M.: Robust hedging and martingale optimal transport in continuous time. Probab. Theory Relat. Fields 160, 391–427 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dolinsky, Y., Soner, H.M.: Robust hedging under proportional transaction costs. Finance Stoch. 18, 327–347 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dubins, L.E., Schwarz, G.: On extremal martingale distributions. In: Le Cam, L.M., Neyman, J. (eds.) Proc. Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 2: Contributions to Probability Theory, Part 1, pp. 295–299. University of California Press, Berkeley (1967)

    Google Scholar 

  21. Galichon, A., Henry-Labordère, P., Touzi, N.: A stochastic control approach to no-arbitrage bounds given marginals, with an application to lookback options. Ann. Appl. Probab. 24, 312–336 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gangbo, W., Świȩch, A.: Optimal maps for the multidimensional Monge–Kantorovich problem. Commun. Pure Appl. Math. 51, 23–45 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Henry-Labordère, P., Obłój, J., Spoida, P., Touzi, N.: The maximum maximum of martingales given marginals. Ann. Appl. Probab. 26, 1–44 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hobson, D.: Robust hedging of the lookback option. Finance Stoch. 2, 329–347 (1998)

    Article  MATH  Google Scholar 

  25. Hobson, D.: The Skorokhod embedding problem and model-independent bounds for option prices. In: Carmona, R.A., et al. (eds.) Paris–Princeton Lectures on Mathematical Finance 2010. Lecture Notes in Mathematics, vol. 2003, pp. 267–318. Springer, Berlin (2011)

    Chapter  Google Scholar 

  26. Hobson, D., Klimmek, M.: Model-independent hedging strategies for variance swaps. Finance Stoch. 16, 611–649 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hobson, D., Neuberger, A.: Robust bounds for forward start options. Math. Finance 22, 31–56 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hobson, D., Pedersen, J.L.: The minimum maximum of a continuous martingale with given initial and terminal laws. Ann. Probab. 30, 978–999 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Jacod, J., Shiryaev, A.N.: Local martingales and the fundamental asset pricing theorems in the discrete-time case. Finance Stoch. 2, 259–273 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  30. Jacod, J., Yor, M.: Etude des solutions extrémales et représentation intégrale des solutions pour certains problèmes de martingales. Z. Wahrscheinlichkeitstheor. Verw. Geb. 38, 83–125 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kahalé, N.: Model-independent lower bound on variance swaps. Math. Finance. (2016, to appear). Available online at: http://onlinelibrary.wiley.com/doi/10.1111/mafi.12083/full

  32. Laurence, P., Wang, T.H.: Sharp upper and lower bounds for basket options. Appl. Math. Finance 12, 253–282 (2005)

    Article  MATH  Google Scholar 

  33. Oberhauser, H., dos Reis, G., Gassiat, P.: Root’s barrier, viscosity solutions of obstacle problems and reflected FBSDEs. Stoch. Process. Appl. 125, 4601–4631 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Obłój, J.: The Skorokhod embedding problem and its offspring. Probab. Surv. 1, 321–392 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  35. Pass, B.: Uniqueness and Monge solutions in the multi-marginal optimal transportation problem. SIAM J. Math. Anal. 43, 2758–2775 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Rachev, S.T., Rüschendorf, L.: Mass Transportation Problems, Vol. I: Theory, Vol. II: Applications. Probability and Its Applications. Springer, New York (1988)

    MATH  Google Scholar 

  37. Strassen, V.: The existence of probability measures with given marginals. Ann. Math. Stat. 36, 423–439 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  38. Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58. AMS, Providence (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Henry-Labordère.

Additional information

The authors are grateful to Mathias Beiglböck and Xiaolu Tan for fruitful comments, and for pointing out subtle gaps in a previous version. This work benefits from the financial support of the ERC Advanced Grant 321111, and the Chairs Financial Risk and Finance and Sustainable Development.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henry-Labordère, P., Touzi, N. An explicit martingale version of the one-dimensional Brenier theorem. Finance Stoch 20, 635–668 (2016). https://doi.org/10.1007/s00780-016-0299-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-016-0299-x

Keywords

Mathematics Subject Classification (2000)

JEL Classification

Navigation