Skip to main content
Log in

On a Heath–Jarrow–Morton approach for stock options

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

This paper aims at transferring the philosophy behind Heath–Jarrow–Morton to the modelling of call options with all strikes and maturities. Contrary to the approach by Carmona and Nadtochiy (Finance Stoch. 13:1–48, 2009) and related to the recent contribution (Finance Stoch. 16:63–104, 2012) by the same authors, the key parameterisation of our approach involves time-inhomogeneous Lévy processes instead of local volatility models. We provide necessary and sufficient conditions for absence of arbitrage. Moreover, we discuss the construction of arbitrage-free models. Specifically, we prove their existence and uniqueness given basic building blocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albert, A.: Regression and the Moore–Penrose Pseudoinverse. Academic Press, New York (1972)

    MATH  Google Scholar 

  2. Barndorff-Nielsen, O., Shephard, N.: Non-Gaussian Ornstein–Uhlenbeck-based models and some of their uses in financial economics. J. R. Stat. Soc., Ser. B, Stat. Methodol. 63, 167–241 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Belomestny, D., Reiß, M.: Spectral calibration of exponential Lévy models. Finance Stoch. 10, 449–474 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bennani, N.: The forward loss model: a dynamic term structure approach for the pricing of portfolios of credit derivatives. Technical report (2005). Available at http://www.defaultrisk.com/pp_crdrv_95.htm

  5. Bühler, H.: Consistent variance curve models. Finance Stoch. 10, 178–203 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Carmona, R.: HJM: a unified approach to dynamic models for fixed income, credit and equity markets. In: Carmona, R., et al. (eds.) Paris–Princeton Lectures in Mathematical Finance, 2005. Lecture Notes in Mathematics, vol. 1919, pp. 3–45. Springer, Berlin (2009)

    Google Scholar 

  7. Carmona, R., Nadtochiy, S.: Local volatility dynamic models. Finance Stoch. 13, 1–48 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Carmona, R., Nadtochiy, S.: Tangent models as a mathematical framework for dynamic calibration. Int. J. Theor. Appl. Finance 14, 107–135 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Carmona, R., Nadtochiy, S.: Tangent Lévy market models. Finance Stoch. 16, 63–104 (2012)

    Article  MathSciNet  Google Scholar 

  10. Carr, P., Geman, H., Madan, D., Yor, M.: Stochastic volatility for Lévy processes. Math. Finance 13, 345–382 (2003)

    Article  MathSciNet  Google Scholar 

  11. Cont, R., Durrleman, V., da Fonseca, I.: Stochastic models of implied volatility surfaces. Econ. Notes 31, 361–377 (2002)

    Article  Google Scholar 

  12. Cont, R., Tankov, P.: Financial Modelling with Jump Processes. CRC Press, Boca Raton (2004)

    MATH  Google Scholar 

  13. Davis, M., Hobson, D.: The range of traded option prices. Math. Finance 17, 1–14 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ethier, S., Kurtz, T.: Markov Processes. Characterization and Convergence. Wiley, New York (1986)

    Book  MATH  Google Scholar 

  15. Filipović, D.: Time-inhomogeneous affine processes. Stoch. Process. Appl. 115, 639–659 (2005)

    Article  MATH  Google Scholar 

  16. Filipović, D., Tappe, S., Teichmann, J.: Term structure models driven by Wiener processes and Poisson measures: existence and positivity. SIAM J. Financ. Math. 1, 523–554 (2010)

    Article  MATH  Google Scholar 

  17. Filipović, D., Tappe, S., Teichmann, J.: Invariant manifolds with boundary for jump-diffusions. Electron. J. Probab. 51, 1–28 (2014)

    Google Scholar 

  18. Heath, D., Jarrow, R., Morton, A.: Bond pricing and the term structure of interest rates: a new methodology for contingent claims valuation. Econometrica 60, 77–105 (1992)

    Article  MATH  Google Scholar 

  19. Jacod, J., Protter, P.: Risk neutral compatibility with option prices. Finance Stoch. 14, 285–315 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jacod, J., Shiryaev, A.: Limit Theorems for Stochastic Processes, 2nd edn. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  21. Kallsen, J.: \(\sigma\)-Localization and \(\sigma\)-martingales. Theory Probab. Appl. 48, 152–163 (2004)

    Article  MathSciNet  Google Scholar 

  22. Kallsen, J.: A didactic note on affine stochastic volatility models. In: Kabanov, Y., Liptser, R., Stoyanov, J. (eds.) From Stochastic Calculus to Mathematical Finance. The Shiryaev Festschrift, pp. 343–368. Springer, Berlin (2006)

    Chapter  Google Scholar 

  23. Protter, P.: Stochastic Integration and Differential Equations, 2nd edn. Springer, Berlin (2004)

    MATH  Google Scholar 

  24. Schönbucher, P.: Portfolio losses and the term structure of loss transition rates: a new methodology for the pricing of portfolio credit derivatives. Technical report (2005). Available at http://www.econbiz.de/archiv1/2008/50106_portfolio_credit_derivatives.pdf

  25. Schweizer, M., Wissel, J.: Arbitrage-free market models for option prices: the multi-strike case. Finance Stoch. 12, 469–505 (2008)

    Article  MathSciNet  Google Scholar 

  26. Schweizer, M., Wissel, J.: Term structures of implied volatilities: absence of arbitrage and existence results. Math. Finance 18, 77–114 (2008)

    Article  MathSciNet  Google Scholar 

  27. Sidenius, J., Piterbarg, V., Andersen, L.: A new framework for dynamic credit portfolio loss modelling. Int. J. Theor. Appl. Finance 11, 163–197 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wissel, J.: Arbitrage-free market models for liquid options. Ph.D. thesis, ETH Zürich (2008). Available at doi:10.3929/ethz-a-005559619

Download references

Acknowledgements

We should like to thank the anonymous referees and the Associate Editor for various useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kallsen.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(PDF 288 kB)

Appendix

Appendix

Proofs and further properties are to be found in the electronic supplement.

1.1 A.1 Local characteristics

Let \(X\) be an \(\mathbb{R}^{d}\)-valued semimartingale with integral characteristics \((B,C,\nu)\) in the sense of [20, Definition II.4.1] with respect to some fixed truncation function \(h:\mathbb{R}^{d}\rightarrow\mathbb{R}^{d}\). By [20, I.2.9] there exist a predictable \(\mathbb{R}^{d}\)-valued process \(b\), a predictable \(\mathbb{R}^{d\times d}\)-valued process \(c\), a kernel \(K\) from \((\varOmega\times\mathbb{R},\mathscr{P})\) to \((\mathbb{R}^{d},\mathscr{B})\), and a predictable increasing process \(A\) such that

$$dB_{t}=b_{t}dA_{t},\quad dC_{t}=c_{t}dA_{t},\quad\nu(dt,dx)=K_{t}(dx)dA_{t}. $$

If \(A_{t}=t\), then we call the triplet \((b,c,K)\) local or differential characteristics of \(X\) relative to the truncation function \(h\). Most processes in applications as, for example, diffusions, Lévy processes etc. allow local characteristics. In this case, \(b\) stands for a drift rate, \(c\) for a diffusion coefficient, and \(K\) for a local Lévy measure representing the jump activity. If they exist, then the local characteristics are unique up to a \(dP\otimes dt\)-nullset on \(\varOmega\times\mathbb{R}_{+}\).

1.2 A.2 Local exponents

Definition A.1

Let \((b,c,K)\) be a Lévy–Khintchine triplet on \(\mathbb{R}^{d}\) relative to some truncation function \(h:\mathbb{R}^{d}\rightarrow\mathbb{R}^{d}\). We call the mapping \(\psi:\mathbb{R}^{d}\rightarrow\mathbb{C}\),

$$ \psi(u):=iub-\frac{1}{2}u^{\top}cu+\int\big(e^{iux}-1-iuh(x)\big)K(dx), $$
(A.1)

the Lévy exponent corresponding to \((b,c,K)\). By [20, II.2.44] the Lévy exponent determines the triplet \((b,c,K)\) uniquely. If \(X\) is a Lévy process with Lévy–Khintchine triplet \((b,c,K)\), then we call \(\psi\) the characteristic or Lévy exponent of \(X\). If (A.1) exists for all \(u\in U\supset \mathbb{R}^{d}\), then we call \(\psi:U\to\mathbb{C}\) defined by (A.1) the extended Lévy exponent of \(X\) on \(U\).

In the same vein, local characteristics naturally lead to local exponents.

Definition A.2

If \(X\) is an \(\mathbb{R}^{d}\)-valued semimartingale with local characteristics \((b,c,K)\), then we write

$$\begin{aligned} \psi^{X}_{t}(u):=iub_{t}-\frac{1}{2}u^{\top}c_{t}u+\int\big(e^{iux}-1-iuh(x)\big)K_{t}(dx),\quad u\in\mathbb{R}^{d}, \end{aligned}$$
(A.2)

for the Lévy exponent corresponding to \((b_{t},c_{t},K_{t})\). We call the family of predictable processes \(\psi^{X}(u):=(\psi^{X}_{t}(u))_{t\in\mathbb{R}_{+}},u\in\mathbb{R}^{d}\), the local exponent of \(X\). Equality (A.2) implies that \(u\mapsto\psi ^{X}_{t}(u)\) is the characteristic exponent of a Lévy process.

The name exponent is of course motivated by the following fact.

Remark A.3

If \(X\) is a semimartingale with deterministic local characteristics \((b,c,K)\), then it is a PII, and we have

$$E[e^{iu(X_{T}-X_{t})}\vert \mathscr{F}_{t}]=E[e^{iu(X_{T}-X_{t})}]=\exp\left(\int_{t}^{T}\psi _{s}^{X}(u)ds\right) $$

for any \(T\in\mathbb{R}_{+}\), \(t\in[0,T]\), \(u\in\mathbb{R}^{d}\); see [20, II.4.15].

We now generalise the notion of local exponents to complex-valued semimartingales and more general arguments.

Definition A.4

Let \(X\) be a \(\mathbb{C}^{d}\)-valued semimartingale, and \(\beta\) a \(\mathbb{C}^{d}\)-valued \(X\)-integrable process. We call a predictable ℂ-valued process \(\psi^{X}(\beta)=(\psi _{t}^{X}(\beta))_{t\in\mathbb{R}_{+}}\) the local exponent of \(X\) at \(\beta\) if \(\psi^{X}(\beta)\) is in \(L(I)\), meaning that it is Lebesgue-integrable on finite intervals, and \((\exp(i\beta \stackrel {\mbox{\tiny $\bullet $}}{}X_{t}-\int_{0}^{t}\psi_{s}^{X}(\beta)ds))_{t\in\mathbb{R}_{+}}\) is a complex-valued local martingale. We denote by \(\mathscr{U}^{X}\) the set of processes \(\beta\) such that the local exponent \(\psi^{X}(\beta)\) exists.

The following lemma implies that \(\psi^{X}(\beta)\) is unique up to a \(dP\otimes dt\)-nullset.

Lemma A.5

Let \(X\) be a complex-valued semimartingale, and \(A,B\) complex-valued predictable processes of finite variation with \(A_{0}=0=B_{0}\) and such that \(\exp(X-A)\) and \(\exp(X-B)\) are local martingales. Then \(A=B\) up to indistinguishability.

The following result shows that Definition A.4 generalises Definition A.2.

Proposition A.6

Let \(X\) be an \(\mathbb{R}^{d}\)-valued semimartingale with local characteristics \((b,c,K)\). Suppose that \(\beta\) is a \(\mathbb{C}^{d}\)-valued predictable and \(X\)-integrable process. If \(\beta\) is \(\mathbb{R}^{d}\)-valued for any \(t\in\mathbb{R}_{+}\), then \(\beta\in\mathscr{U}^{X}\). Moreover, there is equivalence between

  1. 1.

    \(\beta\in\mathscr{U}^{X}\);

  2. 2.

    \(\int_{0}^{t}\int1_{\{-\mathrm{Im}(\beta_{s}x)>1\}}e^{-\mathrm {Im}(\beta_{s}x)}K_{s}(dx)ds<\infty\) almost surely for any \(t\in \mathbb{R} _{+}\).

In this case, we have

$$\begin{aligned} \psi_{t}^{X}(\beta)=i\beta_{t}b_{t}-\frac{1}{2}\beta_{t}^{\top}c_{t}\beta_{t}+\int \big(e^{i\beta_{t}x}-1-i\beta_{t}h(x)\big) K_{t}(dx) \end{aligned}$$
(A.3)

outside some \(dP\otimes dt\)-nullset.

Equality (A.3) implies that the local exponent of \(X\) at any \(\beta\in\mathscr{U}^{X}\) is determined by the triplet \((b,c,K)\) and hence by the local exponent of \(X\) in the sense of Definition A.2.

Definition A.7

Let \(X^{(1)},\dots,X^{(n)}\) be semimartingales which allow local characteristics. We call them locally independent if

$$\mathscr{U}^{(X^{(1)},\dots,X^{(n)})}\cap\big(L(X^{(1)})\times\cdots \times L(X^{(n)})\big) =\mathscr{U}^{X^{(1)}}\times\cdots\times\mathscr{U}^{X^{(n)}} $$

for

$$\begin{aligned} L(X^{(1)})\times\cdots\times L(X^{(n)}) :=&\big\{ \beta=(\beta^{(1)},\dots,\beta^{(n)})\mbox{ complex-valued}:\\ &\phantom{\{} \beta^{(i)} \mbox{ $X^{(i)}$-integrable for }i=1,\dots,n\big\} \end{aligned}$$

and

$$\psi^{(X^{(1)},\dots,X^{(n)})}(\beta)=\sum_{j=1}^{n}\psi^{X^{(j)}}(\beta^{(j)}) $$

outside some \(dP\otimes dt\)-nullset for any \(\beta=(\beta^{(1)},\dots,\beta^{(n)})\in\mathscr{U}^{(X^{(1)},\dots,X^{(n)})}\).

Lemma A.8

If \(\varphi\in\varPi\), then \(\mathrm{Re}(\varphi(u))\leq0\) for any \(u\in \mathbb{R}\), where \(\varPi\) is defined in Sect3.1.

The following four lemmas follow immediately from the definition of local exponents.

Lemma A.9

Let \(X\) be a ℂ-valued semimartingale that allows local characteristics. Then there is equivalence between

  1. 1.

    \(\exp(X)\) is a local martingale;

  2. 2.

    \(-i\in\mathscr{U}^{X}\) and \(\psi^{X}(-i)=0\) outside some \(dP\otimes dt\)-nullset.

Remark A.10

If \(X\) in Lemma A.9 is real-valued and if \(e^{X}\) is a local martingale, then Proposition A.6 yields that the mapping \(\mathbb{R}\to\mathbb{C}\), \(u\mapsto\psi^{X}_{t}(u)\) is in \(\varPi\) outside some \(dP\otimes dt\)-nullset.

Lemma A.11

Let \(X\) be a \(\mathbb{C}^{d}\)-valued semimartingale, \(\beta\) a \(\mathbb{C}^{d}\)-valued and \(X\)-integrable process, and \(u\in\mathbb{C}\). Then \(u\beta\in\mathscr{U}^{X}\) if and only if \(u\in\mathscr{U}^{\beta\stackrel{.}{} X}\). In that case, we have

$$\psi^{X}(u\beta)=\psi^{\beta\stackrel{.}{} X}(u). $$

Lemma A.12

Let \(X,Y\) be \(\mathbb{C}^{d}\)-valued semimartingales, and \(u\in\mathbb{C}^{d}\). Then \(u\in\mathscr{U}^{X+Y}\) if and only if \((u,u)\in\mathscr{U}^{(X,Y)}\). In that case, we have

$$\psi^{X+Y}(u)=\psi^{(X,Y)}(u,u) $$

outside some \(dP\otimes dt\)-nullset.

Lemma A.13

Let \(X,Z\) be \(\mathbb{C}^{d}\)-valued semimartingales, and \(\beta,\gamma\) predictable \(\mathbb{C}^{d}\)-valued processes such that

  1. 1.

    the components of \(\gamma\) are Lebesgue-integrable on finite intervals;

  2. 2.

    \(\beta\gamma\) is Lebesgue-integrable on finite intervals;

  3. 3.

    \(Z_{t}=Z_{0}+\int_{0}^{t}\gamma_{s} ds+X_{t}\).

Then \(\beta\in\mathscr{U}^{Z}\) if and only if \(\beta\in\mathscr{U}^{X}\). In that case, \(\psi^{Z}(\beta)=\psi^{X}(\beta)+i\beta\gamma\) outside some \(dP\otimes dt\)-nullset.

1.3 A.3 Semimartingale decomposition relative to a semimartingale

Let \((X,Y)\) be an \(\mathbb{R}^{1+d}\)-valued semimartingale with local characteristics \((b,c,K)\), written here in the form

$$ b=\left( \textstyle\begin{array}{c}b^{X}\\ b^{Y} \end{array}\displaystyle \right), \quad c:=\left( \textstyle\begin{array}{cc}c^{X} & c^{X,Y}\\ c^{Y,X}& c^{Y} \end{array}\displaystyle \right). $$
(A.4)

Suppose that \(\int_{0}^{t}\int_{(1,\infty)}e^{x}K_{s}(dx)ds<\infty\) for any \(t\in\mathbb{R}_{+}\) or, equivalently, \(e^{X}\) is a special semimartingale. We set

$$\begin{aligned} X^{\parallel}_{t} :=&\log \mathscr{E}\left(\big(c^{X,Y}(c^{Y})^{-1}\big)\stackrel {\mbox{\tiny $\bullet $}}{}Y^{c}_{t}+f*\big(\mu ^{(X,Y)}-\nu^{(X,Y)}\big)_{t}\right) \end{aligned}$$

for any \(t\in\mathbb{R}_{+}\), where \(c^{-1}\) denotes the pseudoinverse of a matrix \(c\) in the sense of [1], \(Y^{c}\) is the continuous local martingale part of \(Y\), \(\mu^{(X,Y)}\) resp. \(\nu^{(X,Y)}\) denote the random measure of jumps of \((X,Y)\) and its compensator, and \(f:\mathbb{R}^{1+d}\rightarrow\mathbb{R}\), \((x,y)\mapsto(e^{x}-1)1_{\{y\neq0\}}\). We call \(X^{\parallel}\) and \(X^{\perp}:=X-X^{\parallel}\) the dependent and independent parts of \(X\) relative to \(Y\).

1.4 A.4 Option pricing by Fourier transform

We denote by

$$\begin{aligned} \mathscr{F}f(u):=\lim_{C\rightarrow\infty}\int_{-C}^{\infty}f(x)e^{iux}dx \end{aligned}$$
(A.5)

the (left-)improper Fourier transform of a measurable function \(f:\mathbb{R}\rightarrow\mathbb{C}\) for any \(u\in\mathbb{R}\) such that the expression exists. If \(f\) is Lebesgue-integrable, then the improper Fourier transform and the ordinary Fourier transform (i.e., \(u\mapsto\int f(x)e^{iux}dx\)) coincide. In our application in Sect. 3, the improper Fourier transform exists for any \(u\in\mathbb{R}\setminus\{0\}\). Moreover, we denote by

$$\begin{aligned} \mathscr{F}^{-1} g(x):=\frac{1}{2\pi}\left(\lim_{\varepsilon\downarrow0}\int _{\varepsilon}^{\infty}e^{-iux}g(u)du +\lim_{\varepsilon\downarrow0}\int_{-\infty}^{-\varepsilon} e^{-iux}g(u)du\right) \end{aligned}$$
(A.6)

an improper inverse Fourier transform, which is suitable for our application in Sect. 3.

Proposition A.14

Let \((\varOmega, \mathscr{F},P)\) be a probability space, and \(\mathscr{G}\subset \mathscr{F}\) a sub-\(\sigma\)-field. Let \(Y\) be a random variable with \(E[e^{Y}\vert \mathscr{G}]=1\) and define

$$\mathscr{O}(x):= \textstyle\begin{cases}E[(e^{Y-x}-1)^{+}\vert \mathscr{G}] & \textit{ if }x\geq0,\\ E[(1-e^{Y-x})^{+}\vert \mathscr{G}] & \textit{ if }x< 0. \end{cases} $$

Then we have

$$\begin{aligned} \mathscr{O}(x) = & \mathscr{F}^{-1}\bigg(u\mapsto\frac{1-E[e^{iuY}\vert \mathscr{G}]}{u^{2}+iu}\bigg)(x),\\ E[e^{iuY}\vert \mathscr{G}] = & 1-(u^{2}+iu)\mathscr{F}\big(x\mapsto\mathscr{O}(x)\big)(u) \end{aligned}$$

for any \(u,x\in\mathbb{R}\).

1.5 A.5 Bochner integrals in Fréchet spaces

Option price surfaces are interpreted as elements of the Fréchet space \(L^{1}(\mathbb{R}_{+},E)\) in Sect. 4. In order to derive existence and uniqueness results, we need to consider stochastic differential equations in such spaces; see the electronic supplement. These in turn rely on a properly defined Bochner integral. Let \(F\) be a vector space, and \((\Vert\cdot\Vert_{n})_{n\in\mathbb{N}}\) an increasing sequence of separable semi-norms on \(F\) such that

  1. 1.

    \(\|x\|_{n}=0\) \(\forall n\in\mathbb{N}\) only if \(x=0\);

  2. 2.

    if \((x_{k})_{k\in\mathbb{N}}\) is a \(\|\cdot\|_{n}\)-Cauchy sequence for all \(n\in\mathbb{N}\), then there exists \(x\in F\) with \(\lim_{k\to\infty}\|x_{k}-x\|_{n}=0\) for any \(n\in\mathbb{N}\).

Then

$$d(x,y):=\sum_{n\in\mathbb{N}}2^{-n}(1\wedge\Vert x-y\Vert_{n}) $$

defines a complete, translation-invariant, separable metric on the Fréchet space \(F\).

Example A.15

We are mainly interested in the case where \(F:= L^{1}(\mathbb{R}_{+},E)\) and \(\Vert\cdot\Vert_{n}:= \Vert\cdot\Vert_{n,n}\) as defined in Sect. 4 or, alternatively, \(F=E\) itself.

Fix a \(\sigma\)-finite measure space \((\varGamma,\mathscr{G},\mu)\). The goal of this part is to define a Bochner integral \(\int fd\mu\) for measurable functions \(f:\varGamma\to F\) with values in the Fréchet space \(F\); see Definition A.17. If \(f\) is simple and integrable in the sense that it is a linear combination of indicators of sets in \(\mathscr{G}\) with finite \(\mu \)-measure, then the integral \(\int fd\mu\) is naturally defined as a sum.

For each fixed \(n\in\mathbb{N}\), denote the set of measurable Bochner-integrable functions from \((\varGamma,\mathscr{G},\mu)\) to the complete, separable, semi-normed space \((F,\Vert\cdot\Vert_{n})\) by \(\mathscr{L}^{1}((\varGamma,\mathscr{G},\mu), (F,\Vert\cdot\Vert_{n}))\). Recall that a measurable function \(f:\varGamma \to F\) is called Bochner-integrable (relative to \(\|\cdot\|_{n}\)) if there is a sequence \((f^{(k)})_{k\in\mathbb{N}}\) of simple integrable functions with \(\lim_{k\to\infty}\int\|f^{(k)}-f\|_{n}\,d\mu=0\). Equivalently, \(f:\varGamma\to F\) is measurable and \(\int\|f\|_{n}\,d\mu< \infty\); see, for example, Lemma D.7 in the electronic supplement. In this case, there is some \(x\in F\) such that

$$\lim_{k\to\infty}\left\|\int f^{(k)}d\mu-x\right\|_{n}=0 $$

for any such sequence. This element \(\int fd\mu:=x\) is called the \((\Vert\cdot\Vert_{n})\)-Bochner integral of \(f\).

Note that we do not identify functions that are \(\mu\)-a.e. identical. Therefore, the space \(\mathscr{L}^{1}((\varGamma,\mathscr{G},\mu),(F,\Vert\cdot\Vert_{n}))\), together with the semi-norm \(\|f\|:= \int\Vert f\Vert_{n} \,d\mu\), is a complete semi-normed space but in general not a Banach space. Moreover, versions of the \(\Vert\cdot\Vert_{n}\)-Bochner integral may differ by \(\Vert\cdot\Vert_{n}\)-distance zero.

We are now ready to define the desired integral for Fréchet-space-valued functions.

Proposition A.16

Let

$$\begin{aligned} &f\in\mathscr{L}^{1}\big((\varGamma,\mathscr{G},\mu),(F,d)\big):= \bigcap_{n\in\mathbb{N}} \mathscr{L}^{1}\big((\varGamma,\mathscr{G},\mu ),(F,\Vert\cdot\Vert_{n})\big)\\ &\,=\bigg\{ f:\varGamma\to F: f\textit{ measurable with } \int\Vert f\Vert_{n} \,d\mu< \infty, n\in \mathbb{N}\bigg\} . \end{aligned}$$

Then there is one and only one \(x\in F\) such that \(x\) is a version of the \(\Vert\cdot\Vert_{n}\)-Bochner integral \(\int fd\mu\) for any \(n\in\mathbb{N}\).

Definition A.17

(Bochner integral)

We call the set \(\mathscr{L}^{1}((\varGamma,\mathscr{G},\mu),(F,d))\) the space of Bochner-integrable functions and \(\int fd\mu:=x\) from Proposition A.16 the corresponding Bochner integral.

We identify a right-continuous increasing function \(X:\mathbb{R} _{+}\to \mathbb{R}\) with its corresponding Lebesgue–Stieltjes measure \(\mu\) on \(\mathbb{R} _{+}\). For \(t\in \mathbb{R} _{+}\) and \(\varphi: \mathbb{R} _{+}\to F\), we write

$$\varphi\in\mathscr{L}^{1}\big(([0,t],X),(F,d)\big) $$

if \(\varphi1_{[0,t]}\in\mathscr{L}^{1}((\mathbb{R} _{+},\mathscr{B}(\mathbb{R} _{+}),\mu),(F,d))\). Moreover, we write

$$\int_{0}^{t}\varphi_{s}dX_{s}:= \int\varphi1_{[0,t]}d\mu\in F $$

for the integral from Definition A.17.

For right-continuous increasing processes \(X\) and for all measurable functions \(\varphi:\varOmega\times \mathbb{R} _{+}\to \mathbb{R}\), both \(\varphi\in\mathscr{L}^{1}(([0,t],X),(F,d))\) and \(\int_{0}^{t}\varphi_{s}dX_{s}\) are to be interpreted in a pathwise sense, that is, for any fixed \(\omega\in\varOmega\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kallsen, J., Krühner, P. On a Heath–Jarrow–Morton approach for stock options. Finance Stoch 19, 583–615 (2015). https://doi.org/10.1007/s00780-015-0263-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-015-0263-1

Keywords

Mathematics Subject Classification

JEL Classification

Navigation