Skip to main content
Log in

Human interaction discovery in smartphone proximity networks

  • Original Article
  • Published:
Personal and Ubiquitous Computing Aims and scope Submit manuscript

Abstract

Since humans are fundamentally social beings and interact frequently with others in their daily life, understanding social context is of primary importance in building context-aware applications. In this paper, using smartphone Bluetooth as a proximity sensor to create social networks, we present a probabilistic approach to mine human interaction types in real life. Our analysis is conducted on Bluetooth data continuously sensed with smartphones for over one year from 40 individuals who are professionally or personally related. The results show that the model can automatically discover a variety of social contexts. We objectively validated our model by studying its predictive and retrieval performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Airoldi EM, Blei DM, Fienberg SE, Xing EP (2008) Mixed membership stochastic blockmodels. J Mach Learn Res 9:1981–2014

    MATH  Google Scholar 

  2. Ashbrook D, Starner T (2003) Using gps to learn significant locations and predict movement across multiple users. Pers Ubiquitous Comput 7:275–286

    Article  Google Scholar 

  3. Banerjee N, Agarwal S, Bahl V, Chandra R, Wolman A, Corner MD (2010) Virtual Compass: relative positioning to sense mobile social interactions. In: Proc. Pervasive Computing, pp 1–21

  4. Blei DM, Ng AY, Jordan MI (2003) Latent dirichlet allocation. J Mach Learn Res 3:993–1022

    MATH  Google Scholar 

  5. Clauset A, Eagle N (2007) Persistence and periodicity in a dynamic proximity network. In: DIMACS workshop on computational methods for dynamic interaction networks

  6. Dey AK (2001) Understanding and using context. Pers Ubiquitous Comput 5:4–7

    Article  Google Scholar 

  7. Do TMT, Gatica-Perez D (2011) Contextual grouping: discovering real-life interaction types from longitudinal bluetooth data. In: 12th international conference on mobile data management

  8. Do TMT, Gatica-Perez D (2011) Groupus: smartphone proximity data and human interaction type mining. In: 15th annual international symposium on wearable computers

  9. DuBois C, Smyth P (2010) Modeling relational events via latent classes. In: Proceedings of KDD, pp 803–812

  10. Eagle N, Pentland AS, Lazer D (2009) Inferring social network structure using mobile phone data. PNAS 106(36):15274–15278

    Google Scholar 

  11. Eagle N (Sandy), Pentland A (2006) Reality mining: sensing complex social systems. Pers Ubiquitous Comput 10(4):255–268

    Article  Google Scholar 

  12. Farrahi K, Gatica-Perez D (2008) What did you do today? Discovering daily routines from large-scale mobile data. In: ACM multimedia, pp 849–852

  13. Fu W, Song L, Xing EP (2009) Dynamic mixed membership blockmodel for evolving networks. In: Proceedings of ICML, pp 329–336

  14. Gilks WR (1999) Markov chain Monte Carlo. In: Practice, Chapman and Hall/CRC

  15. Gips J, Pentland A (2006) Mapping human networks. In: Proceedings of pervasive computing and communications. IEEE Computer Society, pp 159–168

  16. Griffiths TL, Steyvers M (2004) Finding scientific topics. PNAS 101(Suppl 1):5228–5235

    Article  Google Scholar 

  17. Hightower J, Consolvo S, Lamarca A, Smith I, Hughes J (2005) Learning and recognizing the places we go. In: Proceedings of UbiComp, pp 159–176

  18. Hofmann T (1999) Probabilistic latent semantic indexing. In: SIGIR ’99: Proceedings of the 22nd annual international ACM SIGIR conference on research and development in information retrieval. ACM, New York, pp 50–57. doi:10.1145/312624.312649

  19. Huynh T, Fritz M, Schiele B (2008) Discovery of activity patterns using topic models. In: Proceedings of ubiquitous computing, ACM, pp 10–19

  20. Jeon J, Lavrenko V, Manmatha R (2003) Automatic image annotation and retrieval using cross-media relevance models. In: Proceedings of SIGIR. ACM, New York, pp 119–126. http://doi.acm.org/10.1145/860435.860459

  21. K, N, B, STA (2001) Estimation and prediction for stochastic blockstructures. JASA 96:1077–1087

    Google Scholar 

  22. Kiukkonen N, Blom J, Dousse O, Gatica-Perez D, Laurila J (2010) Towards rich mobile phone datasets: Lausanne data collection campaign. In: Proceedings of ICPS, Berlin

  23. Krumm J, Horvitz E (2006) Predestination: inferring destinations from partial trajectories. In: Proceedings of ubiquitous computing, pp 243–260

  24. Liao L, Fox D, Kautz H (2007) Extracting places and activities from gps traces using hierarchical conditional random fields. Int J Rob Res 26

  25. Mardenfeld S, Boston D, Juan Pan S, Jones Q, Iamnitchi A, Cristian B (2010) Gdc: group discovery using co-location traces. In: SCA

  26. McGovern A, Friedland L, Hay M, Gallagher B, Fast A, Neville J, Jensen D (2003) Exploiting relational structure to understand publication patterns in high-energy physics. SIGKDD Explor Newsl 5(2):165–172

    Article  Google Scholar 

  27. Mills TC (1990) Time series techniques for economists. Cambridge University Press, Cambridge

    Google Scholar 

  28. Minkov E, Cohen WW (2006) An email and meeting assistant using graph walks. In: CEAS

  29. Montoliu R, Gatica-Perez D (2010) Discovering human places of interest from multimodal mobile phone data. In: Proceedings of international conference on on mobile and ubiquitous multimedia

  30. Olguin DO, Waber BN, Kim T, Mohan A, Ara K, Pentland A (2009) Sensible organizations: technology and methodology for automatically measuring organizational behavior. IEEE Trans Syst Man Cybern B Cybern 39:43–55

    Google Scholar 

  31. O’neill E, Kostakos V, Kindberg T, Schiek A, Penn A, Fraser D, Jones T (2006) Instrumenting the city: developing methods for observing and understanding the digital cityscape. In: Proceedings of UbiComp, pp 315–332

  32. Patel SN, Kientz JA, Hayes GR, Bhat S, Abowd GD (2006) Farther than you may think: An empirical investigation of the proximity of users to their mobile phones. In: Proceedings of ubiquitous computing, P. Dourish. Springer, pp 123–140

  33. Raento M, Oulasvirta A, Petit R, Toivonen H (2005) Contextphone: a prototyping platform for context-aware mobile applications. IEEE Perv Comput 4(2):51–59

    Article  Google Scholar 

  34. Sampson FS (1968) A novitiate in a period of change: an experimental and case study of social relationships. Ph.D. thesis, Cornell University

  35. Scott JP (1991) Social network analysis. SAGE, London

    Google Scholar 

  36. Terry M, Mynatt ED, Ryall K, Leigh D (2002) Social net: using patterns of physical proximity over time to infer shared interests. In: Proceedingo of CHI, pp 816–817. http://doi.acm.org/10.1145/506443.506612

  37. Vetek A, Flanagan JA, Colley A, Keränen T (2009) Smartactions: Context-aware mobile phone shortcuts. In: INTERACT (1), pp 796–799

  38. Wang X, Mohanty N, Mccallum A (2006) Group and topic discovery from relations and their attributes. In: Proceedings NIPS, pp 1449–1456

  39. Wasserman S, Faust K (1994) Social Network analysis: methods and applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  40. Wyatt D, Choudhury T, Kautz H (2007) Capturing spontaneous conversation and social dynamics: a private sensitive data collection. effort. In: Proceedings of ICASSP

  41. Zheng B Jr, DCM, Lu X (2006) Identifying biological concepts from a protein-related corpus with a probabilistic topic model. BMC Bioinform 7:58

  42. Ziebart BD, Maas AL, Dey AK, Bagnell JA (2008) Navigate like a cabbie: probabilistic reasoning from observed context-aware behavior. In: Proceedings of UbiComp ’08, pp 322–331

Download references

Acknowledgments

This work was funded by Nokia Research Center Lausanne (NRC) through the LS-CONTEXT project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trinh Minh Tri Do.

Additional information

Based on “GroupUs: Smartphone Proximity Data and Human Interaction Type Mining”, by Trinh Minh Tri Do and Daniel Gatica-Perez which appeared in the Proceedings of the International Symposium on Wearable Computers, San Francisco, California, June 2011. ©2011 IEEE.

Appendix: mathematical derivation of GroupUs learning algorithm

Appendix: mathematical derivation of GroupUs learning algorithm

Begin with the joint distribution

$$ \begin{aligned} &P({\bf u},{\bf v},{\bf c},{\bf s},{\bf t};\varvec{\alpha},\varvec{\beta}) \\ &\quad =\int\limits_\theta P({\bf t}\vert\theta) P(\theta;\varvec{\alpha}) \partial \theta \\ &\qquad\times \int\limits_{\phi} P({\bf u}\vert {\bf t},\phi_1) P({\bf v}\vert {\bf t},\phi_2) P({\bf c}\vert {\bf t},\phi_3) P(\phi;\varvec{\beta}) \partial \phi \\ &\quad = \int\limits_\theta \left( \prod_s \prod_t \theta_{st}^{n_{st}} \prod_s \frac{\prod_t \theta_{st}^{\alpha-1}}{B(\varvec{\alpha})} \right) \partial \theta\\ &\qquad \times \int\limits_{\phi_1} \left( \prod_t \prod_u \phi_{1tu}^{m_{tu}} \prod_t \frac{\prod_u \phi_{1tu}^{\beta-1}}{B(\varvec{\beta})} \right) \partial \phi_1 \\ &\qquad \times \int\limits_{\phi_2} \left( \prod_t \prod_v \phi_{2tv}^{m_{tv}} \prod_t \frac{\prod_v \phi_{2tv}^{\beta-1}}{B(\varvec{\beta})} \right) \partial \phi_2\\ &\qquad \times \int\limits_{\phi_3} \left( \prod_t \prod_c \phi_{3tc}^{m_{tc}} \prod_t \frac{\prod_c \phi_{3tc}^{\beta-1}}{B(\varvec{\beta})} \right) \partial \phi_3 \\ &\quad = \prod_s \int\limits_{\theta_s} \frac{\prod_t \theta_{st}^{\alpha+n_{st}-1}}{B(\varvec{\alpha})} \partial \theta_s \times \prod_t \int\limits_{\phi_{1t}} \frac{\prod_u \phi_{1tu}^{\beta+m_{tu}-1}}{B(\varvec{\beta})} \partial \phi_{1t} \\ &\qquad \times \prod_t \int\limits_{\phi_{2t}} \frac{\prod_v \phi_{2tv}^{\beta+p_{tv}-1}}{B(\varvec{\beta})} \partial \phi_{2t} \times \prod_t \int\limits_{\phi_{3t}} \frac{\prod_c (\phi_{3tc})^{\beta+q_{tc}-1}}{B(\varvec{\beta})} \partial \phi_{3t} \end{aligned} $$

where the term inside integration has similar form as Dirichlet distribution. Note that \( \int_x \frac{\prod_i x_i^{\alpha-1}}{B(\varvec{\alpha})}\partial x = 1, \) we have:

$$ \begin{aligned} &P({\bf u},{\bf v},{\bf c},{\bf s},{\bf t};\varvec{\alpha},\varvec{\beta})\\ &\quad = \prod_s \frac{B(\varvec{\alpha} + {{\bf n}}_s)}{B(\varvec{\alpha})} \times \prod_t \frac{B(\varvec{\beta} + {{\bf m}}_t)}{B(\varvec{\beta})} \times \prod_t \frac{B(\varvec{\beta} + {{\bf p}}_t)}{B(\varvec{\beta})} \times \prod_t \frac{B(\varvec{\beta} + {{\bf q}}_t)}{B(\varvec{\beta})} \\ &\quad = \prod_s \frac{B(\varvec{\alpha} + {{\bf n}}_s)}{B(\varvec{\alpha})} \times \prod_t \frac{B(\varvec{\beta} + {{\bf m}}_t)}{B(\varvec{\beta})} \frac{B(\varvec{\beta} + {{\bf p}}_t)}{B(\varvec{\beta})} \frac{B(\varvec{\beta} + {{\bf q}}_t)}{B(\varvec{\beta})} \end{aligned} $$

The conditional probability can be computed efficiently based on the fact that they are proportional to the joint probability:

$$ \begin{aligned} P(t_i \vert {\bf u},{\bf v},{\bf c},{\bf t}_{\neg i};\alpha,\beta) \\ & = \frac{P({\bf u},{\bf v},{\bf c},{\bf t};\alpha,\beta)}{P({\bf u},{\bf v},{\bf c},{\bf t}_{\neg i};\alpha,\beta)} \\ & \propto \frac{P({\bf u},{\bf v},{\bf c},{\bf t};\alpha,\beta)}{P({\bf u}_{\neg i},{\bf v}_{\neg i},{\bf c}_{\neg i},{\bf t}_{\neg i};\alpha,\beta)} \\ & \propto \frac{\prod_s \frac{B(\varvec{\alpha} + {{\bf n}}_s)}{B(\varvec{\alpha})} \times \prod_t \frac{B(\varvec{\beta} + {{\bf m}}_t)}{B(\varvec{\beta})} \frac{B(\varvec{\beta} + {{\bf p}}_t)}{B(\varvec{\beta})} \frac{B(\varvec{\beta} + {{\bf q}}_t)}{B(\varvec{\beta})}}{\prod_s \frac{B(\varvec{\alpha} + {{\bf n}}^{\neg i}_s)}{B(\varvec{\alpha})} \times \prod_t \frac{B(\varvec{\beta} + {{\bf m}}^{\neg i}_t)}{B(\varvec{\beta})} \frac{B(\varvec{\beta} + {{\bf p}}^{\neg i}_t)}{B(\varvec{\beta})} \frac{B(\varvec{\beta} + {{\bf q}}^{\neg i}_t)}{B(\varvec{\beta})}} \\ & \propto \frac{B(\varvec{\alpha} + {{\bf n}}_{s_i})} {B(\varvec{\alpha} + {{\bf n}}^{\neg i}_{s_i})} \times \frac{B(\varvec{\beta} + {{\bf m}}_{t_i})} {B(\varvec{\beta} + {{\bf m}}^{\neg i}_{t_i})} \times \frac{B(\varvec{\beta} + {{\bf p}}_{t_i})} {B(\varvec{\beta} + {{\bf p}}^{\neg i}_{t_i})} \times \frac{B(\varvec{\beta} + {{\bf q}}_{t_i})} {B(\varvec{\beta} + {{\bf q}}^{\neg i}_{t_i}) } \\ & \propto \frac{\alpha + n^{\neg i}_{s_it_i}}{\sum_t (\alpha + n^{\neg i}_{s_it})} \frac{\beta + m^{\neg i}_{t_iu_i}}{\sum_u (\beta + m^{\neg i}_{t_iu})} \frac{\beta + p^{\neg i}_{t_iv_i}}{\sum_v (\beta + p^{\neg i}_{t_iv})} \frac{\beta + q^{\neg i}_{t_ic_i}}{\sum_c (\beta + q^{\neg i}_{t_ic})} \end{aligned} $$

Since the denominator \(\sum_t (\alpha + n^{\neg i}_{s_it})\) is invariant for any value of t i , we obtain the final sampling equation :

$$ \begin{aligned} P(t_i \vert {\bf u},{\bf v},{\bf c},{\bf t}_{\neg i};\alpha,\beta) &\propto (\alpha + n^{\neg i}_{s_it_i}) \frac{\beta + m^{\neg i}_{t_iu_i}}{\sum_u (\beta + m^{\neg i}_{t_iu})} \\ & \times \frac{\beta + p^{\neg i}_{t_iv_i}}{\sum_v (\beta + p^{\neg i}_{t_iv})} \frac{\beta + q^{\neg i}_{t_ic_i}}{\sum_c (\beta + q^{\neg i}_{t_ic})} \end{aligned} $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Do, T.M.T., Gatica-Perez, D. Human interaction discovery in smartphone proximity networks. Pers Ubiquit Comput 17, 413–431 (2013). https://doi.org/10.1007/s00779-011-0489-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00779-011-0489-7

Keywords

Navigation