Skip to main content
Log in

The influence of head diameter and wall thickness on deformations of metallic acetabular press-fit cups and UHMWPE liners: a finite element analysis

  • Original Article
  • Published:
Journal of Orthopaedic Science

Abstract

Background

To increase the range of motion of total hip endoprostheses, prosthetic heads need to be enlarged, which implies that the cup and/or liner thickness must decrease. This may have negative effects on the wear rate, because the acetabular cups and liners could deform during press-fit implantation and hip joint loading. We compared the metal cup and polyethylene liner deformations that occurred when different wall thicknesses were used in order to evaluate the resulting changes in the clearance of the articulating region.

Methods

A parametric finite element model utilized three cup and liner wall thicknesses to analyze cup and liner deformations after press-fit implantation into the pelvic bone. The resultant hip joint force during heel strike was applied while the femur was fixed, accounting for physiological muscle forces. The deformation behavior of the liner under joint loading was therefore assessed as a function of the head diameter and the resulting clearance.

Results

Press-fit implantation showed diametral cup deformations of 0.096, 0.034, and 0.014 mm for cup wall thicknesses of 3, 5, and 7 mm, respectively. The largest deformations (average 0.084 ± 0.003 mm) of liners with thicknesses of 4, 6, and 8 mm occurred with the smallest cup wall thickness (3 mm). The smallest liner deformation (0.011 mm) was obtained with largest cup and liner wall thicknesses. Under joint loading, liner deformations in thin-walled acetabular cups (3 mm) reduced the initial clearance by about 50 %.

Conclusion

Acetabular press-fit cups with wall thicknesses of ≤5 mm should only be used in combination with polyethylene liners >6 mm thick in order to minimize the reduction in clearance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Krukemeyer M, Möllenhoff G. Endoprothetik. Leitfäden für Praktiker. Berlin: de Gruyter; 2009.

  2. Widmer KH, Zurfluh B, Morscher EW. Load transfer and fixation mode of press-fit acetabular sockets. J Arthroplast. 2002;17(7):926–35.

    Article  Google Scholar 

  3. Maloney WJ. Orthopaedic crossfire—larger femoral heads: a triumph of hope over reason! In opposition. J Arthroplast. 2003;18(3 Suppl 1):85–7.

    Article  Google Scholar 

  4. Hermida JC, Bergula A, Chen P, Colwell CW Jr, D’Lima DD. Comparison of the wear rates of twenty-eight and thirty-two-millimeter femoral heads on cross-linked polyethylene acetabular cups in a wear simulator. J Bone Joint Surg Am. 2003;85-A(12):2325–31.

    PubMed  Google Scholar 

  5. Kluess D, Martin H, Mittelmeier W, Schmitz KP, Bader R. Influence of femoral head size on impingement, dislocation and stress distribution in total hip replacement. Med Eng Phys. 2007;29(4):465–71.

    Article  PubMed  Google Scholar 

  6. Teoh SH, Chan WH, Thampuran R. An elasto-plastic finite element model for polyethylene wear in total hip arthroplasty. J Biomech. 2002;35(3):323–30.

    Article  PubMed  CAS  Google Scholar 

  7. Ong KL, Rundell S, Liepins I, Laurent R, Markel D, Kurtz SM. Biomechanical modeling of acetabular component polyethylene stresses, fracture risk, and wear rate following press-fit implantation. J Orthop Res. 2009;27(11):1467–72.

    Article  PubMed  Google Scholar 

  8. Mai MT, Schmalzried TP, Dorey FJ, Campbell PA, Amstutz HC. The contribution of frictional torque to loosening at the cement–bone interface in Tharies hip replacements. J Bone Joint Surg Am. 1996;78(4):505–11.

    Google Scholar 

  9. Hamilton WG, Calendine CL, Beykirch SE, Hopper RH Jr, Engh CA. Acetabular fixation options: first-generation modular cup curtain calls and caveats. J Arthroplast. 2007;22(4 Suppl 1):75–81.

    Article  Google Scholar 

  10. Jin ZM, Meakins S, Morlock MM, Parsons P, Hardaker C, Flett M, Isaac G. Deformation of press-fitted metallic resurfacing cups. Part 1: experimental simulation. Proc Inst Mech Eng H. 2006;220(2):299–309.

    Article  Google Scholar 

  11. Schmidig G, Patel A, Liepins I, Thakore M, Markel DC. The effects of acetabular shell deformation and liner thickness on frictional torque in ultrahigh-molecular-weight polyethylene acetabular bearings. J Arthroplast. 2010;25(4):644–53.

    Article  Google Scholar 

  12. Yew A, Jin ZM, Donn A, Morlock MM, Isaac G. Deformation of press-fitted metallic resurfacing cups. Part 2: finite element simulation. Proc Inst Mech Eng H. 2006;220(2):311–9.

    Article  PubMed  CAS  Google Scholar 

  13. Fritsche A, Bialek K, Mittelmeier W, Simnacher M, Fethke K, Wree A, Bader R. Experimental investigations of the insertion and deformation behavior of press-fit and threaded acetabular cups for total hip replacement. J Orthop Sci. 2008;13(3):240–7.

    Article  PubMed  Google Scholar 

  14. Crowninshield RD, Maloney WJ, Wentz DH, Humphrey SM, Blanchard CR. Biomechanics of large femoral heads: what they do and don’t do. Clin Orthop Relat Res. 2004;429:102–7.

    Article  PubMed  Google Scholar 

  15. Bergmann G, Deuretzbacher G, Heller M, Graichen F, Rohlmann A, Strauss J, Duda GN. Hip contact forces and gait patterns from routine activities. J Biomech. 2001;34(7):859–71.

    Article  PubMed  CAS  Google Scholar 

  16. Dalstra M, Huiskes R, van Erning L. Development and validation of a three-dimensional finite element model of the pelvic bone. J Biomech Eng. 1995;117(3):272–8.

    Article  PubMed  CAS  Google Scholar 

  17. Garcia JM, Doblare M, Seral B, Seral F, Palanca D, Gracia L. Three-dimensional finite element analysis of several internal and external pelvis fixations. J Biomech Eng. 2000;122(5):516–22.

    Article  PubMed  CAS  Google Scholar 

  18. ASTM International. ASTM-D695. Standard test method for compressive properties of rigid plastics. West Conshohocken: ASTM International; 2010.

  19. ASTM International. ASTM-D1621. Standard test method for compressive properties of rigid cellular plastics. West Conshohocken: ASTM International; 2010.

  20. Zhang C, Leng Y, Chen J. Elastic and plastic behavior of plasma-sprayed hydroxyapatite coatings on a Ti-6Al-4V substrate. Biomaterials. 2001;22(11):1357–63.

    Article  PubMed  CAS  Google Scholar 

  21. Burger W, Richter HG. High strength and toughness alumina matrix composites by transformation toughening and “in situ” platelet reinforcement (ZPTA)—the new generation of bioceramic. Bioceramics. 2001;13:545–8.

    Google Scholar 

  22. Kluess D, Souffrant R, Mittelmeier W, Wree A, Schmitz KP, Bader R. A convenient approach for finite-element-analyses of orthopaedic implants in bone contact: modeling and experimental validation. Comput Methods Programs Biomed. 2009;95(1):23–30.

    Article  PubMed  Google Scholar 

  23. Speirs AD, Heller MO, Duda GN, Taylor WR. Physiologically based boundary conditions in finite element modelling. J Biomech. 2007;40(10):2318–23.

    Article  PubMed  Google Scholar 

  24. Heller MO, Bergmann G, Kassi JP, Claes L, Haas NP, Duda GN. Determination of muscle loading at the hip joint for use in pre-clinical testing. J Biomech. 2005;38(5):1155–63.

    Article  PubMed  CAS  Google Scholar 

  25. Heiner AD. Structural properties of fourth-generation composite femurs and tibias. J Biomech. 2008;41(15):3282–4.

    Article  PubMed  Google Scholar 

  26. Kim JE, Li Z, Ito Y, Huber CD, Shih AM, Eberhardt AW, Yang KH, King AI, Soni BK. Finite element model development of a child pelvis with optimization-based material identification. J Biomech. 2009;42(13):2191–5.

    Article  PubMed  Google Scholar 

  27. Polgar K, Viceconti M, O’Connor JJ. A comparison between automatically generated linear and parabolic tetrahedra when used to mesh a human femur. Proc Inst Mech Eng H. 2001;215(1):85–94.

    Article  PubMed  CAS  Google Scholar 

  28. Jin ZM, Dowson D, Fisher J. Analysis of fluid film lubrication in artificial hip joint replacements with surfaces of high elastic modulus. Proc Inst Mech Eng H. 1997;211(3):247–56.

    Article  PubMed  CAS  Google Scholar 

  29. Wang A, Essner A, Klein R. Effect of contact stress on friction and wear of ultra-high molecular weight polyethylene in total hip replacement. Proc Inst Mech Eng H. 2001;215(2):133–9.

    PubMed  CAS  Google Scholar 

  30. Bader R, Scholz R, Steinhauser E, Zimmermann S, Busch R, Mittelmeier W. The influence of head and neck geometry on stability of total hip replacement: a mechanical test study. Acta Orthop Scand. 2004;75(4):415–21.

    Article  PubMed  Google Scholar 

  31. Waewsawangwong W, Goodman SB. Unexpected failure of highly cross-linked polyethylene acetabular liner. J Arthroplast. 2012;27(2):323.e1–4.

    Google Scholar 

  32. Tower SS, Currier JH, Currier BH, Lyford KA, Van Citters DW, Mayor MB. Rim cracking of the cross-linked longevity polyethylene acetabular liner after total hip arthroplasty. J Bone Joint Surg Am. 2007;89(10):2212–7.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank OHST Medizintechnik AG, 14712 Rathenow, Germany, for technical support.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Goebel.

About this article

Cite this article

Goebel, P., Kluess, D., Wieding, J. et al. The influence of head diameter and wall thickness on deformations of metallic acetabular press-fit cups and UHMWPE liners: a finite element analysis. J Orthop Sci 18, 264–270 (2013). https://doi.org/10.1007/s00776-012-0340-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00776-012-0340-7

Keywords

Navigation