Skip to main content
Log in

Similarities and differences of copper and zinc cations binding to biologically relevant peptides studied by vibrational spectroscopies

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

GHK and DAHK are biological peptides that bind both copper and zinc cations. Here we used infrared and Raman spectroscopies to study the coordination modes of both copper and zinc ions, at pH 6.8 and 8.9, correlating the data with the crystal structures that are only available for the copper-bound form. We found that Cu(II) binds to deprotonated backbone (amidate), the N-terminus and Nπ of the histidine side chain, in both GHK and DAHK, at pH 6.8 and 8.9. The data for the coordination of zinc at pH 6.8 points to two conformers including both nitrogens of a histidine residue. At pH 8.9, vibrational spectra of the ZnGHK complexes show that equilibria between monomers, oligomers exist, where deprotonated histidine residues as well as deprotonated amide nitrogen are involved in the coordination. A common feature is found: zinc cations coordinate to Nτ and/or Nπ of the His leading to the formation of GHK and DAHK multimers. In contrast, Cu(II) binds His via Nπ regardless of the peptide, in a pH-independent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

FTIR:

Fourier transform infrared

GHK:

NH2-Glycine-histidine-lysine-COOH

DAHK:

NH2-Aspartic acid-alanine-histidine-lysine-COOH

HSA:

Human serum albumin

υ :

Stretching vibration

δ :

In-plane bending vibration

ω :

Wagging vibration

References

  1. Bal W, Sokolowska M, Kurowska E, Faller P (2013) Biochim Biophys Acta 1830:5444–5455

    Article  CAS  PubMed  Google Scholar 

  2. Masuoka J, Saltman P (1994) J Biol Chem 269:25557–25561

    CAS  PubMed  Google Scholar 

  3. Bal W, Christodoulou J, Sadler PJ, Tucker A (1998) J Inorg Biochem 70:33–39

    Article  CAS  PubMed  Google Scholar 

  4. Hureau C, Eury H, Guillot R, Bijani C, Sayen S, Solari PL, Guillon E, Faller P, Dorlet P (2011) Chemistry 17:10151–10160

    Article  CAS  PubMed  Google Scholar 

  5. Handing KB, Shabalin IG, Kassaar O, Khazaipoul S, Blindauer CA, Stewart AJ, Chruszcz M, Minor W (2016) Chemi Sci 7:6635–6648

    Article  CAS  Google Scholar 

  6. Stewart AJ, Blindauer CA, Berezenko S, Sleep D, Sadler PJ (2003) Proc Natl Acad Sci U S A 100:3701–3706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lakusta H, Sarkar B (1979) J Inorg Biochem 11:303–315

    Article  CAS  Google Scholar 

  8. Pickart L, Freedman JH, Loker WJ, Peisach J, Perkins CM, Stenkamp RE, Weinstein B (1980) Nature 288:715–717

    Article  CAS  PubMed  Google Scholar 

  9. Pickart L, Vasquez-Soltero JM, Margolina A (2015) Biomed Res Int. doi:10.1155/2015/648108

    PubMed  PubMed Central  Google Scholar 

  10. Campbell JD, McDonough JE, Zeskind JE, Hackett TL, Pechkovsky DV, Brandsma C-A, Suzuki M, Gosselink JV, Liu G, Alekseyev YO, Xiao J, Zhang X, Hayashi S, Cooper JD, Timens W, Postma DS, Knight DA, Lenburg ME, Hogg JC, Spira A (2012) Genome Med 4:67

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Pickart L, Vasquez-Soltero JM, Margolina A (2012) Oxid Med Cell Longev 2012:324832

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hong Y, Downey T, Eu KW, Koh PK, Cheah PY (2010) Clin Exp Metastasis 27:83–90

    Article  CAS  PubMed  Google Scholar 

  13. Trapaidze A, Hureau C, Bal W, Winterhalter M, Faller P (2012) J Biol Inorg Chem 17:37–47

    Article  CAS  PubMed  Google Scholar 

  14. Conato C, Gavioli R, Guerrini R, Kozlowski H, Mlynarz P, Pasti C, Pulidori F, Remelli M (2001) Biochim Biophys Acta 1526:199–210

    Article  CAS  PubMed  Google Scholar 

  15. Freedman JH, Pickart L, Weinstein B, Mims WB, Peisach J (1982) Biochemistry 21:4540–4544

    Article  CAS  PubMed  Google Scholar 

  16. Perkins CM, Rose NJ, Weinstein B, Stenkamp RE, Jensen LH, Pickart L (1984) Inorg Chim Acta 82:93–99

    Article  CAS  Google Scholar 

  17. (1984) Eur J Biochem 138:9-37

  18. Faller P (2009) ChemBioChem 10:2837–2845

    Article  CAS  PubMed  Google Scholar 

  19. Hureau C, Faller P (2009) Biochimie 91:1212–1217

    Article  CAS  PubMed  Google Scholar 

  20. Kozlowski H, Luczkowski M, Remelli M, Valensin D (2012) Coord Chem Rev 256:2129–2141

    Article  CAS  Google Scholar 

  21. Cherny RA, Atwood CS, Xilinas ME, Gray DN, Jones WD, McLean CA, Barnham KJ, Volitakis I, Fraser FW, Kim YS, Huang XD, Goldstein LE, Moir RD, Lim JT, Beyreuther K, Zheng H, Tanzi RE, Masters CL, Bush AI (2001) Neuron 30:665–676

    Article  CAS  PubMed  Google Scholar 

  22. Bar-Or D, Rael LT, Lau EP, Rao NK, Thomas GW, Winkler JV, Yukl RL, Kingston RG, Curtis CG (2001) Biochem Biophys Res Commun 284:856–862

    Article  CAS  PubMed  Google Scholar 

  23. Gum ET, Swanson RA, Alano C, Liu J, Hong S, Weinstein PR, Panter SS (2004) Stroke 35:590–595

    Article  CAS  PubMed  Google Scholar 

  24. Agostinho P, Cunha RA, Oliveira C (2010) Curr Pharm Des 16:2766–2778

    Article  CAS  PubMed  Google Scholar 

  25. Hu X, Zhang Q, Wang W, Yuan Z, Zhu X, Chen B, Chen X (2016) ACS Chem Neurosci 7:1255–1263

    Article  CAS  PubMed  Google Scholar 

  26. Miura T, Satoh T, Hori-i A, Takeuchi H (1998) J Raman Spectrosc 29:41–47

    Article  CAS  Google Scholar 

  27. Miura T, Suzuki K, Kohata N, Takeuchi H (2000) Biochemistry 39:7024–7031

    Article  CAS  PubMed  Google Scholar 

  28. Takeuchi H (2003) Biopolymers 72:305–317

    Article  CAS  PubMed  Google Scholar 

  29. El Khoury Y, Dorlet P, Faller P, Hellwig P (2011) J Phys Chem B 115:14812–14821

    Article  PubMed  Google Scholar 

  30. Andrushchenko VV, Vogel HJ, Prenner EJ (2007) J Pep Sci 13:37–43

    Article  CAS  Google Scholar 

  31. Barth A, Zscherp C (2002) Q Rev Biophys 35:369–430

    Article  CAS  PubMed  Google Scholar 

  32. Barth A (2000) Prog Biophys Mol Biol 74:141–173

    Article  CAS  PubMed  Google Scholar 

  33. Hasegawa K, Ono T-A, Noguchi T (2000) J Phys Chem B 104:4253–4265

    Article  CAS  Google Scholar 

  34. Hasegawa K, Ono T, Noguchi T (2002) J Phys Chem A 106:3377–3390

    Article  CAS  Google Scholar 

  35. Torreggiani A, Bonora S, Fini G (2000) Biopolymers 57:352–364

    Article  CAS  PubMed  Google Scholar 

  36. Takeuchi H (2011) Anal Sci 27:1077–1086

    Article  CAS  PubMed  Google Scholar 

  37. Sóvágó I, Várnagy K, Lihi N, Grenács Á (2016) Coord Chem Rev 327–328:43–54

    Article  Google Scholar 

  38. Farkas E, Sovago I, Gergely A (1983) Dalton Trans 1983:1545–1551

    Article  Google Scholar 

Download references

Acknowledgements

A. Schirer, Y. El Khoury and P. Hellwig acknowledge the support by the University of Strasbourg, the CNRS as well as the FRC. P. Faller gratefully acknowledges the support of the University of Strasbourg and the University of Strasbourg Institute for Advanced Study (USIAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Hellwig.

Additional information

A. Schirer and Y. El Khoury contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schirer, A., El Khoury, Y., Faller, P. et al. Similarities and differences of copper and zinc cations binding to biologically relevant peptides studied by vibrational spectroscopies. J Biol Inorg Chem 22, 581–589 (2017). https://doi.org/10.1007/s00775-017-1449-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-017-1449-0

Keywords

Navigation