Skip to main content
Log in

Production and isolation of vanadium nitrogenase from Azotobacter vinelandii by molybdenum depletion

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The alternative, vanadium-dependent nitrogenase is employed by Azotobacter vinelandii for the fixation of atmospheric N2 under conditions of molybdenum starvation. While overall similar in architecture and functionality to the common Mo-nitrogenase, the V-dependent enzyme exhibits a series of unique features that on one hand are of high interest for biotechnological applications. As its catalytic properties differ from Mo-nitrogenase, it may on the other hand also provide invaluable clues regarding the molecular mechanism of biological nitrogen fixation that remains scarcely understood to date. Earlier studies on vanadium nitrogenase were almost exclusively based on a ΔnifHDK strain of A. vinelandii, later also in a version with a hexahistidine affinity tag on the enzyme. As structural analyses remained unsuccessful with such preparations we have developed protocols to isolate unmodified vanadium nitrogenase from molybdenum-depleted, actively nitrogen-fixing A. vinelandii wild-type cells. The procedure provides pure protein at high yields whose spectroscopic properties strongly resemble data presented earlier. Analytical size-exclusion chromatography shows this preparation to be a VnfD2K2G2 heterohexamer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

EPR:

Electron paramagnetic resonance

RALS:

Right-angle light scattering

SEC:

Size-exclusion chromatography

References

  1. Rees DC (1993) Curr Opin Struct Biol 3:921–928

    Article  CAS  Google Scholar 

  2. Canfield DE, Glazer AN, Falkowski PG (2010) Science 330:192–196

    Article  CAS  PubMed  Google Scholar 

  3. Howard JB, Rees DC (1996) Chem Rev 96:2965–2982

    Article  CAS  PubMed  Google Scholar 

  4. Rees DC, Tezcan FA, Haynes CA, Walton MY, Andrade S, Einsle O, Howard JB (2005) Philos Trans R Soc Lond A 363:971–984

  5. Lee CC, Hu YL, Ribbe MW (2012) Proc Natl Acad Sci 109:6922–6926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Danyal K, Inglet BS, Vincent KA, Barney BM, Hoffman BM, Armstrong FA, Dean DR, Seefeldt LC (2010) J Am Chem Soc 132:13197–13199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Roth LE, Nguyen JC, Tezcan FA (2010) J Am Chem Soc 132:13672–13674

    Article  CAS  PubMed  Google Scholar 

  8. Roth LE, Tezcan FA (2012) J Am Chem Soc 134:8416–8419

    Article  CAS  PubMed  Google Scholar 

  9. Brown KA, Harris DF, Wilker MB, Rasmussen A, Khadka N, Hamby H, Keable S, Dukovic G, Peters JW, Seefeldt LC, King PW (2016) Science 352:448–450

    Article  CAS  PubMed  Google Scholar 

  10. Peters JW, Stowell MHB, Soltis SM, Finnegan MG, Johnson MK, Rees DC (1997) Biochemistry 36:1181–1187

    Article  CAS  PubMed  Google Scholar 

  11. Kim JS, Rees DC (1992) Science 257:1677–1682

    Article  CAS  PubMed  Google Scholar 

  12. Einsle O, Tezcan FA, Andrade SLA, Schmid B, Yoshida M, Howard JB, Rees DC (2002) Science 297:1696–1700

    Article  CAS  PubMed  Google Scholar 

  13. Lancaster KM, Roemelt M, Ettenhuber P, Hu YL, Ribbe MW, Neese F, Bergmann U, DeBeer S (2011) Science 334:974–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Spatzal T, Aksoyoğlu M, Zhang LM, Andrade SLA, Schleicher E, Weber S, Rees DC, Einsle O (2011) Science 334:940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mayer SM, Lawson DM, Gormal CA, Roe SM, Smith BE (1999) J Mol Biol 292:871–891

    Article  CAS  PubMed  Google Scholar 

  16. Zhang LM, Morrison CN, Kaiser JT, Rees DC (2015) Acta Crystallogr D 71:274–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Owens CP, Katz FEH, Carter CH, Oswald VF, Tezcan FA (2016) J Am Chem Soc 138:10124–10127

    Article  CAS  PubMed  Google Scholar 

  18. Burns RC, Fuchsman WH, Hardy RWF (1971) Biochem Biophys Res Commun 42:353

    Article  CAS  PubMed  Google Scholar 

  19. Bishop PE, Jarlenski DML, Hetherington DR (1980) Proc Natl Acad Sci 77:7342–7346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Benemann JR, Kamen MD, Traylor TG, Lie RF, McKenna CE (1972) Biochim Biophys Acta 264:25–32

    Article  CAS  PubMed  Google Scholar 

  21. Bishop PE, Premakumar R, Dean DR, Jacobson MR, Chisnell JR, Rizzo TM, Kopczynski J (1986) Science 232:92–94

    Article  CAS  PubMed  Google Scholar 

  22. Bishop PE, Hawkins ME, Eady RR (1986) Biochem J 238:437–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hales BJ, Case EE, Morningstar JE, Dzeda MF, Mauterer LA (1986) Biochemistry 25:7253–7255

    Article  Google Scholar 

  24. Eady RR, Robson RL, Richardson TH, Miller RW, Hawkins M (1987) Biochem J 244:197–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Setubal JC, dos Santos P, Goldman BS, Ertesvag H, Espin G, Rubio LM, Valla S, Almeida NF, Balasubramanian D, Cromes L, Curatti L, Du ZJ, Godsy E, Goodner B, Hellner-Burris K, Hernandez JA, Houmiel K, Imperial J, Kennedy C, Larson TJ, Latreille P, Ligon LS, Lu J, Maerk M, Miller NM, Norton S, O’Carroll IP, Paulsen I, Raulfs EC, Roemer R, Rosser J, Segura D, Slater S, Stricklin SL, Studholme DJ, Sun J, Viana CJ, Wallin E, Wang BM, Wheeler C, Zhu HJ, Dean DR, Dixon R, Wood D (2009) J Bacteriol 191:4534–4545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee CC, Hu YL, Ribbe MW (2009) Proc Natl Acad Sci 106:9209–9214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Miller RW, Eady RR (1988) Biochem J 256:429–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee CC, Hu YL, Ribbe MW (2010) Science 329:642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hu YL, Lee CC, Ribbe MW (2012) Dalton T 41:1118–1127

    Article  CAS  Google Scholar 

  30. Hu YL, Lee CC, Ribbe MW (2011) Science 333:753–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang ZY, Dean DR, Seefeldt LC (2011) J Biol Chem 286:19417–19421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Spatzal T, Perez KA, Einsle O, Howard JB, Rees DC (2014) Science 345:1620–1623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rees JA, Björnsson R, Schlesier J, Sippel D, Einsle O, DeBeer S (2015) Angew Chem Int Edit 54:13249–13252

    Article  CAS  Google Scholar 

  34. Lipman JG (1903) Rep New Jersey Agric Exp Stn 24:217–285

    Google Scholar 

  35. Mason B, Moore CB (1982) Principles of geochemistry. Wiley, New York

  36. Fenske D, Gnida M, Schneider K, Meyer-Klaucke W, Schemberg J, Henschel V, Meyer AK, Knochel A, Muller A (2005) ChemBioChem 6:405–413

    Article  CAS  PubMed  Google Scholar 

  37. Poppe J, Warkentin E, Demmer U, Kowalewski B, Dierks T, Schneider K, Ermler U (2014) J Inorg Biochem 138:122–128

    Article  CAS  PubMed  Google Scholar 

  38. Schneider K, Müller A, Johannes KU, Diemann E, Kottmann J (1991) Anal Biochem 193:292–298

    Article  CAS  PubMed  Google Scholar 

  39. Lee CC, Blank MA, Fay AW, Yoshizawa JM, Hu YL, Hodgson KO, Hedman B, Ribbe MW (2009) Proc Natl Acad Sci 106:18474–18478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Eady RR, Richardson TH, Miller RW, Hawkins M, Lowe DJ (1988) Biochem J 256:189–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tittsworth RC, Hales BJ (1996) Biochemistry 35:479–487

    Article  CAS  PubMed  Google Scholar 

  42. Hales BJ, True AE, Hoffman BM (1989) J Am Chem Soc 111:8519–8520

    Article  CAS  Google Scholar 

  43. Hibbs DE, Chan SS, Castellano M, Niu CH (1995) New Phytol 129:569–577

    Article  Google Scholar 

  44. Tittsworth RC, Hales BJ (1993) J Am Chem Soc 115:9763–9767

    Article  CAS  Google Scholar 

  45. Eady RR (1996) Chem Rev 96:3013–3030

    Article  CAS  PubMed  Google Scholar 

  46. Lee CC, Hu YL, Ribbe MW (2015) mBio 6:e00307–e00315

  47. Lee CC, Hu YL, Ribbe MW (2015) Angew Chem Int Edit 54:1219–1222

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Eric Springer and Elke Gerbig-Smentek for assistance with cell growth and protein isolation. This work was supported by the European Research Council (ERC Grant No. 310656), the Deutsche Forschungsgemeinschaft (RTG 1976 and PP 1927) and the BIOSS Centre for Biological Signalling Studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Einsle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sippel, D., Schlesier, J., Rohde, M. et al. Production and isolation of vanadium nitrogenase from Azotobacter vinelandii by molybdenum depletion. J Biol Inorg Chem 22, 161–168 (2017). https://doi.org/10.1007/s00775-016-1423-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-016-1423-2

Keywords

Navigation