Skip to main content

Advertisement

Log in

Exposure of aconitase to smoking-related oxidants results in iron loss and increased iron response protein-1 activity: potential mechanisms for iron accumulation in human arterial cells

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Smokers have an elevated risk of cardiovascular disease, but the origin(s) of this increased risk are incompletely defined. Evidence supports an accumulation of the oxidant-generating enzyme myeloperoxidase (MPO) in the inflamed artery wall, and smokers have high levels of SCN, a preferred MPO substrate, with this resulting in HOSCN formation. We hypothesised that HOSCN, a thiol-specific oxidant may target the iron-sulphur cluster of aconitase (both isolated, and within primary human coronary artery endothelial cells; HCAEC) resulting in enzyme dysfunction, release of iron, and conversion of the cytosolic isoform to iron response protein-1, which regulates intracellular iron levels. We show that exposure of isolated aconitase to increasing concentrations of HOSCN releases iron from the aconitase [Fe-S]4 cluster, and decreases enzyme activity. This is associated with protein thiol loss and modification of specific Cys residues in, and around, the [Fe-S]4 cluster. Exposure of HCAEC to HOSCN resulted in increased intracellular levels of chelatable iron, loss of aconitase activity and increased iron response protein-1 (IRP-1) activity. These data indicate HOSCN, an oxidant associated with oxidative stress in smokers, can induce aconitase dysfunction in human endothelial cells via Cys oxidation, damage to the [Fe-S]4 cluster, iron release and generation of IRP-1 activity, which modulates ferritin protein levels and results in dysregulation of iron metabolism. These data may rationalise, in part, the presence of increased levels of iron in human atherosclerotic lesions and contribute to increased oxidative damage and endothelial cell dysfunction in smokers. Similar reactions may occur at other sites of inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

c-aconitase:

Cytosolic aconitase

DFO:

Desferrioxamine

EMSA:

Electrophoretic mobility shift assay

HCAEC:

Primary human coronary artery endothelial cells

HOCl:

The physiological mixture of hypochlorous acid and its anion

HOSCN:

The physiological mixture of hypothiocyanous acid and its anion

IREs:

Iron responsive elements

IRP-1:

Iron response protein-1

m-aconitase:

Mitochondrial aconitase

MPO:

Myeloperoxidase

TCA:

Trichloroacetic acid

TfR:

Transferrin receptor

References

  1. Parish S, Collins R, Peto R, Youngman L, Barton J, Jayne K, Clarke R, Appleby P, Lyon V, Cederholm-Williams S et al (1995) BMJ 311:471–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Libby P, Ridker PM, Maseri A (2002) Circulation 105:1135–1143

    Article  CAS  PubMed  Google Scholar 

  3. Perlstein TS, Lee RT (2006) Arterioscler Thromb Vasc Biol 26:250–256

    Article  CAS  PubMed  Google Scholar 

  4. Jaimes EA, DeMaster EG, Tian RX, Raij L (2004) Arterioscler Thromb Vasc Biol 24:1031–1036

    Article  CAS  PubMed  Google Scholar 

  5. Bermudez EA, Rifai N, Buring JE, Manson JE, Ridker PM (2002) Am J Cardiol 89:1117–1119

    Article  PubMed  Google Scholar 

  6. Morgan PE, Pattison DI, Talib J, Summers FA, Harmer JA, Celermajer DS, Hawkins CL, Davies MJ (2011) Free Radic Biol Med 51:1815–1822

    Article  CAS  PubMed  Google Scholar 

  7. Wang Z, Nicholls SJ, Rodriguez ER, Kummu O, Horkko S, Barnard J, Reynolds WF, Topol EJ, DiDonato JA, Hazen SL (2007) Nat Med 13:1176–1184

    Article  CAS  PubMed  Google Scholar 

  8. Daugherty A, Dunn JL, Rateri DL, Heinecke JW (1994) J Clin Invest 94:437–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nicholls SJ, Hazen SL (2005) Arterioscler Thromb Vasc Biol 25:1102–1111

    Article  CAS  PubMed  Google Scholar 

  10. Davies MJ, Hawkins CL, Pattison DI, Rees MD (2008) Antioxid Redox Signal 10:1199–1234

    Article  CAS  PubMed  Google Scholar 

  11. van Dalen CJ, Whitehouse MW, Winterbourn CC, Kettle AJ (1997) Biochem J 327:487–492

    Article  PubMed  PubMed Central  Google Scholar 

  12. Talib J, Pattison DI, Harmer JA, Celermajer DS, Davies MJ (2012) Free Radic Biol Med 53:20–29

    Article  CAS  PubMed  Google Scholar 

  13. Pattison DI, Davies MJ (2006) Curr Med Chem 13:3271–3290

    Article  CAS  PubMed  Google Scholar 

  14. Pattison DI, Davies MJ (2001) Chem Res Toxicol 14:1453–1464

    Article  CAS  PubMed  Google Scholar 

  15. Skaff O, Pattison DI, Davies MJ (2009) Biochem J 422:111–117

    Article  CAS  PubMed  Google Scholar 

  16. Skaff O, Pattison DI, Morgan PE, Bachana R, Jain VK, Priyadarsini KI, Davies MJ (2012) Biochem J 441:305–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Talib J, Kwan J, Suryo Rahmanto A, Witting PK, Davies MJ (2014) Biochem J 457:89–97

    Article  CAS  PubMed  Google Scholar 

  18. Cook NL, Pattison DI, Davies MJ (2012) Free Radic Biol Med 53:2072–2080

    Article  CAS  PubMed  Google Scholar 

  19. Bulteau AL, Ikeda-Saito M, Szweda LI (2003) Biochemistry 42:14846–14855

    Article  CAS  PubMed  Google Scholar 

  20. Yan LJ, Levine RL, Sohal RS (1997) Proc Natl Acad Sci USA 94:11168–11172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang J, Pantopoulos K (2011) Biochem J 434:365–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li W, Xu LH, Forssell C, Sullivan JL, Yuan XM (2008) Exp Biol Med (Maywood) 233:818–826

    Article  CAS  Google Scholar 

  23. Stadler N, Lindner RA, Davies MJ (2004) Arterioscler Thromb Vasc Biol 24:949–954

    Article  CAS  PubMed  Google Scholar 

  24. Stanley N, Stadler N, Woods AA, Bannon PG, Davies MJ (2006) Free Radic Biol Med 40:1636–1643

    Article  CAS  PubMed  Google Scholar 

  25. Thomas EL (1981) Biochemistry 20:3273–3280

    Article  CAS  PubMed  Google Scholar 

  26. Ellman GL (1959) Arch Biochem Biophys 82:70–77

    Article  CAS  PubMed  Google Scholar 

  27. Thomas EL, Grisham MB, Jefferson MM (1986) Meth Enzymol 132:569–585

    Article  CAS  PubMed  Google Scholar 

  28. Pieroni L, Khalil L, Charlotte F, Poynard T, Piton A, Hainque B, Imbert-Bismut F (2001) Clin Chem 47:2059–2061

    CAS  PubMed  Google Scholar 

  29. Hawkins CL, Morgan PE, Davies MJ (2009) Free Radic Biol Med 46:965–988

    Article  CAS  PubMed  Google Scholar 

  30. Emptage MH, Dreyers JL, Kennedy MC, Beinert H (1983) J Biol Chem 258:11106–11111

    CAS  PubMed  Google Scholar 

  31. Han D, Canali R, Garcia J, Aguilera R, Gallaher TK, Cadenas E (2005) Biochemistry 44:11986–11996

    Article  CAS  PubMed  Google Scholar 

  32. Hawkins CL, Pattison DI, Stanley NR, Davies MJ (2008) Biochem J 414:271–280

    Article  PubMed  Google Scholar 

  33. Martins FG, Andrade JF, Pimenta AC, Lourenzo LM, Castro JRM, Balbo VR (2005) Eclet Quim 30:63–71

    Article  CAS  Google Scholar 

  34. Storkey C, Davies MJ, Pattison DI (2014) Free Radic Biol Med 73:60–66

    Article  CAS  PubMed  Google Scholar 

  35. Lloyd MM, Grima MA, Rayner BS, Hadfield KA, Davies MJ, Hawkins CL (2013) Free Radic Biol Med 65:1352–1362

    Article  CAS  PubMed  Google Scholar 

  36. Crichton RR, Wilmet S, Legssyer R, Ward RJ (2002) J Inorg Biochem 91:9–18

    Article  CAS  PubMed  Google Scholar 

  37. Mutze S, Hebling U, Stremmel W, Wang J, Arnhold J, Pantopoulos K, Mueller S (2003) J Biol Chem 278:40542–40549

    Article  PubMed  Google Scholar 

  38. Hall RE, Henriksson KG, Lewis SF, Haller RG, Kennaway NG (1993) J Clin Invest 92:2660–2666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cantu D, Fulton RE, Drechsel DA, Patel M (2011) J Neurochem 118:79–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Park LCH, Albers DS, Xu H, Lindsay JG, Beal MF, Gibson GE (2001) J Neurosci Res 66:1028–1034

    Article  CAS  PubMed  Google Scholar 

  41. Liang L-P, Patel M (2004) J Neurochem 90:1076–1084

    Article  CAS  PubMed  Google Scholar 

  42. Tabrizi SJ, Cleeter MWJ, Xuereb J, Taanman JW, Cooper JM, Schapira AHV (1999) Ann Neurol 45:25–32

    Article  CAS  PubMed  Google Scholar 

  43. Pattison DI, Davies MJ, Hawkins CL (2012) Free Radic Res 46:975–995

    Article  CAS  PubMed  Google Scholar 

  44. Cairo G, Recalcati S, Pietrangelo A, Minotti G (2002) Free Radic Biol Med 32:1237–1243

    Article  CAS  PubMed  Google Scholar 

  45. Varghese S, Tang Y, Imlay JA (2003) J Bacteriol 185:221–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Soum E, Brazzolotto X, Goussias C, Bouton C, Moulis JM, Mattioli TA, Drapier JC (2003) Biochemistry 42:7648–7654

    Article  CAS  PubMed  Google Scholar 

  47. Brazzolotto X, Gaillard J, Pantopoulos K, Hentze MW, Moulis J-M (1999) J Biol Chem 274:21625–21630

    Article  CAS  PubMed  Google Scholar 

  48. Crow JP, Beckman JS, McCord JM (1995) Biochemistry 34:3544–3552

    Article  CAS  PubMed  Google Scholar 

  49. Castro L, Rodriguez M, Radi R (1994) J Biol Chem 269:29409–29415

    CAS  PubMed  Google Scholar 

  50. Flint DH, Tuminello JF, Emptage MH (1993) J Biol Chem 268:22369–22376

    CAS  PubMed  Google Scholar 

  51. Tortora V, Quijano C, Freeman B, Radi R, Castro L (2007) Free Radic Biol Med 42:1075–1088

    Article  CAS  PubMed  Google Scholar 

  52. Zheng L, Andrews PC, Hermodson MA, Dixon JE, Zalkin H (1990) J Biol Chem 265:2814–2821

    CAS  PubMed  Google Scholar 

  53. Kennedy MC, Spoto G, Emptage MH, Beinert H (1988) J Biol Chem 263:8190–8193

    CAS  PubMed  Google Scholar 

  54. Malle E, Waeg G, Schreiber R, Grone EF, Sattler W, Grone HJ (2000) Eur J Biochem 267:4495–4503

    Article  CAS  PubMed  Google Scholar 

  55. Altamura S, Muckenthaler MU (2009) J Alzeimer’s Dis 16:879–895

    Google Scholar 

  56. Madamanchi NR, Runge MS (2007) Circ Res 100:460–473

    Article  CAS  PubMed  Google Scholar 

  57. Tampo Y, Kotamraju S, Chitambar CR, Kalivendi SV, Keszler A, Joseph J, Kalyanaraman B (2003) Circ Res 92:56–63

    Article  CAS  PubMed  Google Scholar 

  58. Pantopoulos K, Hentze MW (1995) Proc Natl Acad Sci USA 92:1267–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kotamraju S, Chitambar CR, Kalivendi SV, Joseph J, Kalyanaraman B (2002) J Biol Chem 277:17179–17187

    Article  CAS  PubMed  Google Scholar 

  60. Caltagirone A, Weiss G, Pantopoulos K (2001) J Biol Chem 276:19738–19745

    Article  CAS  PubMed  Google Scholar 

  61. Schultz BE, Chan SI (2001) Ann Rev Biophys Biomol Struct 30:23–65

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mr. Pat Pisansarakit for tissue culture support, and Drs. David Pattison, Naomi Cook, Benjamin Rayner and Frederick Luk for help and advice on experimental methods. We thank the Australian Research Council (through the Centres of Excellence Scheme, CE0561607, and Discovery Programs DP0988311), and the Novo Nordisk Foundation (Laureate Research Grant NNF13OC0004294 to MJD) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Davies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talib, J., Davies, M.J. Exposure of aconitase to smoking-related oxidants results in iron loss and increased iron response protein-1 activity: potential mechanisms for iron accumulation in human arterial cells. J Biol Inorg Chem 21, 305–317 (2016). https://doi.org/10.1007/s00775-016-1340-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-016-1340-4

Keywords

Navigation