Skip to main content

Advertisement

Log in

Orange protein from Desulfovibrio alaskensis G20: insights into the Mo–Cu cluster protein-assisted synthesis

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A novel metalloprotein containing a unique [S2MoS2CuS2MoS2]3− cluster, designated as Orange Protein (ORP), was isolated for the first time from Desulfovibrio gigas, a sulphate reducer. The orp operon is conserved in almost all sequenced Desulfovibrio genomes and in other anaerobic bacteria, however, so far D. gigas ORP had been the only ORP characterized in the literature. In this work, the purification of another ORP isolated form Desulfovibrio alaskensis G20 is reported. The native protein is monomeric (12443.8 ± 0.1 Da by ESI–MS) and contains also a MoCu cluster with characteristic absorption bands at 337 and 480 nm, assigned to S–Mo charge transfer bands. Desulfovibrio alaskensis G20 recombinant protein was obtained in the apo-form from E. coli. Cluster reconstitution studies and UV–visible titrations with tetrathiomolybdate of the apo-ORP incubated with Cu ions indicate that the cluster is incorporated in a protein metal-assisted synthetic mode and the protein favors the 2Mo:1Cu stoichiometry. In Desulfovibrio alaskensis G20, the orp genes are encoded by a polycistronic unit composed of six genes whereas in Desulfovibrio vulgaris Hildenborough the same genes are organized into two divergent operons, although the composition in genes is similar. The gene expression of ORP (Dde_3198) increased 6.6 ± 0.5 times when molybdate was added to the growth medium but was not affected by Cu(II) addition, suggesting an involvement in molybdenum metabolism directly or indirectly in these anaerobic bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. George GN, Pickering IJ, Yu EY, Prince RC, Bursakov SA, Gavel OY, Moura I, Moura JJG (2000) J Am Chem Soc 122:8321–8322

    Article  CAS  Google Scholar 

  2. Bursakov SA, Gavel OY, Di Rocco G, Lampreia J, Calvete J, Pereira AS, Moura JJG, Moura I (2004) J Inorg Biochem 98:833–840

    Article  CAS  PubMed  Google Scholar 

  3. Carepo MSP, Pauleta SR, Wedd AG, Moura JJG, Moura I (2014) J Biol Inorg Chem 19:605–614

    Article  CAS  PubMed  Google Scholar 

  4. Ala A, Walker AP, Ashkan K, Dooley JS, Schilsky ML (2007) Lancet 369:397–408

    Article  CAS  PubMed  Google Scholar 

  5. Alvarez HM, Xue Y, Robinson CD, Canalizo-Hernandez MA, Marvin RG, Kelly RA, Mondragon A, Penner-Hahn JE, O’Halloran TV (2010) Science 327:331–334

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Bissig KD, Voegelin TC, Solioz M (2001) FEBS Lett 507:367–370

    Article  CAS  PubMed  Google Scholar 

  7. Blackburn NJ (2010) Chem Biol 17:8–9

    Article  CAS  PubMed  Google Scholar 

  8. Brewer GJ (2000) J Trace Elem Exp Med 13:51–61

    Article  CAS  Google Scholar 

  9. Brewer GJ (2005) Curr Cancer Drug Tar 5:195–202

    Article  CAS  Google Scholar 

  10. George GN, Pickering IJ, Harris HH, Gailer J, Klein D, Lichtmannegger J, Summer KH (2003) J Am Chem Soc 125:1704–1705

    Article  CAS  PubMed  Google Scholar 

  11. Laurie SH (2000) Eur J Inorgan Chem 2000:2443–2450

  12. Wu DX, Hong MC, Cao R, Liu HQ (1996) Inorg Chem 35:1080–1082

    Article  CAS  PubMed  Google Scholar 

  13. Jeannin Y, Secheresse F, Bernes S, Robert F (1992) Inorg Chim Acta 198:493–505

    Article  Google Scholar 

  14. McDonald JW, Friesen GD, Rosenhein LD, Newton WE (1983) Inorg Chim Acta 72:205–210

    Article  CAS  Google Scholar 

  15. Muller A, Bogge H, Schimanski U, Penk M, Nieradzik K, Dartmann M, Krickemeyer E, Schimanski J, Romer C, Romer M, Dornfeld H, Wienboker U, Hellmann W, Zimmermann M (1989) Monatshefte Fur Chemie 120:367–391

    Article  Google Scholar 

  16. Muller A, Diemann E, Jostes R, Bogge H (1981) Angewandte Chemie-Int Ed English 20:934–955

    Article  Google Scholar 

  17. Muller A, Sarkar S (1977) Angewandte Chemie-Int Ed English 16:705–707

    Article  Google Scholar 

  18. Fievet A, My L, Cascales E, Ansaldi M, Pauleta SR, Moura I, Dermoun Z, Bernard CS, Dolla A, Aubert C (2011) J Bacteriol 193:3207–3219

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Scholten JC, Culley DE, Brockman FJ, Wu G, Zhang W (2007) Biochem Biophy Res Commun 352:48–54

    Article  CAS  Google Scholar 

  20. He Q, Huang KH, He Z, Alm EJ, Fields MW, Hazen TC, Arkin AP, Wall JD, Zhou J (2006) Appl Environ Microbiol 72:4370–4381

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. He Z, Zhou A, Baidoo E, He Q, Joachimiak MP, Benke P, Phan R, Mukhopadhyay A, Hemme CL, Huang K, Alm EJ, Fields MW, Wall J, Stahl D, Hazen TC, Keasling JD, Arkin AP, Zhou J (2010) Appl Environ Microbiol 76:1574–1586

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Clark ME, He Q, He Z, Huang KH, Alm EJ, Wan XF, Hazen TC, Arkin AP, Wall JD, Zhou JZ, Fields MW (2006) Appl Environ Microbiol 72:5578–5588

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Zhang W, Culley DE, Scholten JC, Hogan M, Vitiritti L, Brockman FJ (2006) Antonie Van Leeuwenhoek 89:221–237

    Article  CAS  PubMed  Google Scholar 

  24. Zhang W, Culley DE, Nie L, Scholten JC (2007) Appl Microbiol Biotechnol 76:447–457

    Article  CAS  PubMed  Google Scholar 

  25. Hauser LJ, Land ML, Brown SD, Larimer F, Keller KL, Rapp-Giles BJ, Price MN, Lin M, Bruce DC, Detter JC, Tapia R, Han CS, Goodwin LA, Cheng JF, Pitluck S, Copeland A, Lucas S, Nolan M, Lapidus AL, Palumbo AV, Wall JD (2011) J Bacteriol 193:4268–4269

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Postgate JR (1984) The sulphate reducing bacteria. Cambridge University Press, Cambridge

    Google Scholar 

  27. Julie D, Thompson D, Higgins G, Gibson TJ (1994) Nucl Acids Res 22:4673–4680

  28. Rivas MG, Carepo MS, Mota CS, Korbas M, Durand MC, Lopes AT, Brondino CD, Pereira AS, George GN, Dolla A, Moura JJ, Moura I (2009) Biochemistry 48:873–882

    Article  CAS  PubMed  Google Scholar 

  29. Cort, JR (2000) J Struct Funct Genomics 1:15–25

  30. Etezady-Esfarjani T, Herrmann T, Peti W, Klock HE, Lesley SA, Wuthrich K (2004) J Biomol NMR 29:403–406

    Article  CAS  PubMed  Google Scholar 

  31. Cort JR, Yee A, Edwards AM, Arrowsmith CH, Kennedy MA (2000) J Struct Funct Genomics 1:15–25

    Article  CAS  PubMed  Google Scholar 

  32. Pauleta SR, Duarte AG, Carepo MS, Pereira AS, Tavares P, Moura I, Moura JJ (2007) Biomol NMR Assignm 1:81–83

    Article  CAS  Google Scholar 

  33. Neca AJ, Soares R, Carepo MS, Pauleta SR (2015) Biomol NMR Assignm. doi:10.1007/s12104-015-9648-5

    Google Scholar 

  34. Hu Y, Ribbe MW (2013) J Biol Chem 288:13173–13177

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Hu Y, Ribbe MW (2013) Biochim Biophys Acta 1827:1112–1122

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Peters JW, Broderick JB (2012) Annu Rev Biochem 81:429–450

    Article  CAS  PubMed  Google Scholar 

  37. Najmudin S, Bonifacio C, Duarte AG, Pauleta SR, Moura I, Moura JJ, Romao MJ (2009) Acta crystallographica Section F. Struct Biol Crystall Commun 65:730–732

    Article  CAS  Google Scholar 

  38. Quagraine EK, Reid RS (2001) J Inorg Biochem 85:53–60

    Article  CAS  PubMed  Google Scholar 

  39. Chidambaram MV, Barnes G, Frieden E (1984) J Inorg Biochem 22:231–239

    Article  CAS  PubMed  Google Scholar 

  40. Juarez JC, Betancourt O Jr, Pirie-Shepherd SR, Guan X, Price ML, Shaw DE, Mazar AP, Donate F (2006) Clin Cancer Res 12:4974–4982

    Article  CAS  PubMed  Google Scholar 

  41. Park KH, Park YD, Lee JR, Hahn HS, Lee SJ, Bae CD, Yang JM, Kim DE, Hahn MJ (2005) Biochim Biophys Acta 1726:115–120

    Article  CAS  PubMed  Google Scholar 

  42. Lee VE, Schulman JM, Stiefel EI, Lee CC (2007) J Inorg Biochem 101:1707–1718

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Fundação para a Ciência e Tecnologia (FCT) and the French National Research Agency for the financial supports (projects PTDC/QUI-BIQ/098071/2008 to IM, FCT-ANR/BBB-MET/0023/2012 to SRP and ANR-12-ISV8-0003-01 to CA) and scholarship SFRH/BD/87898/2012 (CC). This work was financed by National funds by FCT under the project PEst-C/EQB/LA0006/2013. SRP is an Investigador FCT fellow. MSPC was a Ciencia2007 FCT fellow and presently is a BJT-CAPES Researcher.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marta S. P. Carepo or Isabel Moura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carepo, M.S.P., Carreira, C., Grazina, R. et al. Orange protein from Desulfovibrio alaskensis G20: insights into the Mo–Cu cluster protein-assisted synthesis. J Biol Inorg Chem 21, 53–62 (2016). https://doi.org/10.1007/s00775-015-1323-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-015-1323-x

Keywords

Navigation