Skip to main content
Log in

What factors influence the reactivity of C–H hydroxylation and C=C epoxidation by [FeIV(Lax)(1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane)(O)]n+

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Density functional theory is used to investigate geometric structures and mechanisms for hydroxylation and epoxidation from propene for four non-heme iron complexes, [FeIV(Lax)(TMC)(O)]n+, which are the inverted isomers of [FeIV(O)(TMC)(Lax)]n+ (Lax = acetonitrile (AN), monoanionic trifluoroacetate (TF), azide (N3), thiolate (SR)). The Fe(IV)O unit is found to be sterically less hindered in [FeIV(Lax)(TMC)(O)]n+ than that in [FeIV(O)(TMC)(Lax)]n+. Becke, three-parameter, Lee–Yang–Parr (B3LYP) calculations show that hydroxylation and epoxidation proceed via a two-state-reactivity on competing triplet and quintet spin surfaces; and the reactions have been invariably mediated by the S = 2 state. The reaction pathways computed reveal that 2-AN is the most reactive in the four [FeIV(Lax)(TMC)(O)]n+ complexes; along the reaction pathway, the axial ligand moves away from the iron center, and thus, the energy of the LUMO decreases. The anionic axial ligand, which is more electron releasing than neutral AN, shows a strong overlap of iron orbitals. Thus, the anionic ligand does not move away from the iron center. The H-abstraction is affected by the tunneling contribution, the more electron donation power of the axial ligand, the more effect of the tunneling contribution. Adding the tunneling correction, the relative reactivity of the hydroxylation follows the trend: 2-AN > 2-SR ≈ 2-N3 > 2-TF. However, for the epoxidation, the reactivity is in the following order of 2-AN > 2-TF > 2-N3 > 2-SR. Except for 2-AN, 2-X (Lax = TF, N3, SR) complexes chemoselectively hydroxylate even in the presence of a C=C double bond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Que L Jr (2007) Acc Chem Res 40:493–550

    Article  CAS  PubMed  Google Scholar 

  2. Sono M, Roach MP, Coulter ED, Dawson JH (1996) Chem Rev 96:2841–2887

    Article  CAS  PubMed  Google Scholar 

  3. Wallar BJ, Lipscomb JD (1996) Chem Rev 96:2625–2658

    Article  CAS  PubMed  Google Scholar 

  4. Solomon EI, Brunold TC, Davis MI, Kemsley JN, Lee SK, Lehnert N, Neese F, Skulan AJ, Yang YS, Zhou J (2000) Chem Rev 100:235–349

    Article  CAS  PubMed  Google Scholar 

  5. Costas M, Mehn MP, Jensen MP, Que L Jr (2004) Chem Rev 104:939–986

    Article  CAS  PubMed  Google Scholar 

  6. Hegg EL, Que L (1997) Eur J Biochem 250:625–629

    Article  CAS  PubMed  Google Scholar 

  7. Que L Jr (2000) Nat Struct Biol 7:182–184

    Article  CAS  PubMed  Google Scholar 

  8. Koehntop KD, Emerson JP, Que L Jr (2005) J Biol Inorg Chem 10:87–93

    Article  CAS  PubMed  Google Scholar 

  9. Bruijnincx PCA, van Koten G, Klein Gebbink RJM (2008) Chem Soc Rev 37:2716–2744

    Article  CAS  PubMed  Google Scholar 

  10. Mcdonald AR, Que L Jr (2013) Coord Chem Rev 257:414–428

    Article  CAS  Google Scholar 

  11. Price JC, Barr EW, Tirupati B, Bollinger JM Jr, Krebs C (2003) Biochemistry 42:7497–7508

    Article  CAS  PubMed  Google Scholar 

  12. Price JC, Barr EW, Glass TE, Krebs C, Bollinger JM Jr (2003) J Am Chem Soc 125:13008–13009

    Article  CAS  PubMed  Google Scholar 

  13. Riggs-Gelasco PJ, Price JC, Guyer RB, Brehm JH, Barr EW, Bollinger JM Jr, Krebs C (2004) J Am Chem Soc 126:8108–8109

    Article  CAS  PubMed  Google Scholar 

  14. Proshlyakov DA, Henshaw TF, Monterosso GR, Ryle MJ, Hausinger RP (2004) J Am Chem Soc 126:1022–1023

    Article  CAS  PubMed  Google Scholar 

  15. Hoffart LM, Barr EW, Guyer RB, Bollinger JM Jr, Krebs C (2006) Proc Natl Acad Sci USA 103:14738–14743

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Galonić DP, Barr EW, Walsh CT, Bollinger JM Jr, Krebs C (2007) Nat Chem Boil 3:113–116

    Article  Google Scholar 

  17. Matthews ML, Krest CM, Barr EW, Vaillancourt FH, Walsh CT, Green MT, Krebs C, Bollinger JM Jr (2009) Biochemistry 48:4331–4343

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Panay AJ, Lee M, Krebs C, Bollinger JM Jr, Fitzpatrick PF (2011) Biochemistry 50:1928–1933

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Eser BE, Barr EW, Frantom PA, Saleh L, Bollinger JM Jr, Krebs C, Fitzpatrick PF (2007) J Am Chem Soc 129:11334–11335

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Suh Y, Seo MS, Kim KM, Kim YS, Jang HG, Tosha T, Kitagawa T, Kim J, Nam W (2006) J Inorg Biochem 100:627–633

    Article  CAS  PubMed  Google Scholar 

  21. Hirao H, Que L Jr, Nam W, Shaik S (2008) Chem Eur J 14:1740–1756

    Article  CAS  PubMed  Google Scholar 

  22. Kaizer J, Klinker EJ, Oh NY, Rohde JU, Song WJ, Stubna A, Kim J, Münck E, Nam W, Que L Jr (2004) J Am Chem Soc 126:472–473

    Article  CAS  PubMed  Google Scholar 

  23. Balland V, Charlot A-F, Banse F, Girerd J-J, Mattioli TA, Bill E, Bartoli J-F, Battioni P, Mansuy D (2004) Eur J Inorg Chem 2:301–308

    Article  Google Scholar 

  24. Martinho M, Banse F, Bartoli M-F, Mattioli TA, Battioni P, Horner O, Bourcier S, Girerd J-J (2005) Inorg Chem 44:9592–9596

    Article  CAS  PubMed  Google Scholar 

  25. Oh NY, Suh Y, Park MJ, Seo MS, Kim J, Nam W (2005) Angew Chem Int Ed 44:4235–4239

    Article  CAS  Google Scholar 

  26. Paine TK, Costas M, Kaizer J, Que L Jr (2006) J Biol Inorg Chem 11:272–276

    Article  CAS  PubMed  Google Scholar 

  27. Lim MH, Rohde J-U, Stubna A, Bukoeski MR, Costas M, Ho RYN, Münck E, Nam W, Que L Jr (2003) Proc Natl Acad Sci USA 100:3665–3670

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Rohde J-U, In J-H, Lim MH, Brennessel WW, Bukowski MR, Stubna A, Münck E, Nam W, Que L Jr (2003) Science 299:1037–1039

    Article  CAS  PubMed  Google Scholar 

  29. Kim SO, Sastri CV, Seo MS, Kim J, Nam W (2005) J Am Chem Soc 127:4178–4179

    Article  CAS  PubMed  Google Scholar 

  30. Sastri CV, Park MJ, Ohta T, Jackson TA, Stubna A, Seo MS, Lee J, Kim J, Kitagawa T, Münck E, Que L Jr, Nam W (2005) J Am Chem Soc 127:12494–12495

    Article  CAS  PubMed  Google Scholar 

  31. Sastri CV, Seo MS, Park MJ, Kim KM, Nam W (2005) Chem Commun (11):1405–1407

  32. You M, Seo MS, Kim KM, Nam W, Kim J (2006) Bull Korean Chem Soc 27:1140–1144

    Article  CAS  Google Scholar 

  33. Sastri CV, Lee J, Oh K, Lee YJ, Lee J, Jackson TA, Ray K, Hirao H, Shin W, Halfen JA, Kim J, Que L Jr, Shaik S, Nam W (2007) Proc Natl Acad Sci USA 104:19181–19186

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Bukowski MR, Koehntop KD, Stubna A, Bominaar EL, Halfen JA, Münck E, Nam W, Que L Jr (2005) Science 310:1000–1002

    Article  CAS  PubMed  Google Scholar 

  35. Rohde J-U, Que L Jr (2005) Angew Chem Int Ed 44:2255–2258

    Article  CAS  Google Scholar 

  36. Pestovsky O, Stoian S, Bominaar EL, Shan XP, Münck E, Que L Jr, Bakac A (2005) Angew Chem Int Ed 44:6871–6874

    Article  CAS  Google Scholar 

  37. Jackson TA, Rohde J-U, Seo MS, Sastri CV, DeHont R, Stubna A, Ohta T, Kitagawa T, Münck E, Nam W, Que L Jr (2008) J Am Chem Soc 130:12394–12407

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Mandal D, Ramanan R, Usharani D, Janardanan D, Wang BJ, Shaik S (2015) J Am Chem Soc 137:722–733

    Article  CAS  PubMed  Google Scholar 

  39. Ray K, England J, Fiedler AT, Martinho M, Muuck E, Que L Jr (2008) Angew Chem Int Ed 47:8068–8071

    Article  CAS  Google Scholar 

  40. de Visser SP (2006) J Am Chem Soc 128:15809–15818

    Article  PubMed  Google Scholar 

  41. de Visser SP (2006) J Am Chem Soc 128:9813–9824

    Article  PubMed  Google Scholar 

  42. de Visser SP, Nam W (2008) J Phys Chem A 112:12887–12895

    Article  PubMed  Google Scholar 

  43. Hirao H, Kumar D, Que L Jr, Shaik S (2006) J Am Chem Soc 128:8590–8606

    Article  CAS  PubMed  Google Scholar 

  44. Wang Y, Wang Y, Han K-L (2009) J Biol Inorg Chem 14:533–545

    Article  CAS  PubMed  Google Scholar 

  45. Wang Y, Han K-L (2010) J Biol Inorg Chem 15:351–359

    Article  CAS  PubMed  Google Scholar 

  46. Kumar D, Hirao H, Que L Jr, Shaik S (2005) J Am Chem Soc 127:8026–8027

    Article  CAS  PubMed  Google Scholar 

  47. de Visser SP (2005) J Phys Chem A 109:11050–11057

    Article  PubMed  Google Scholar 

  48. Shaik S, Kumar D, de Visser SP (2008) J Am Chem Soc 130:10128–10140

    Article  CAS  PubMed  Google Scholar 

  49. Frisch MJ et al (2009) Gaussian 09, revision D.01. Gaussian, Wallingford

  50. Becke AD (1992) J Chem Phys 96:2155–2160

    Article  CAS  Google Scholar 

  51. Becke AD (1992) J Chem Phys 97:9173–9177

    Article  CAS  Google Scholar 

  52. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  53. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  54. Hay JP, Wadt WR (1985) J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  55. Friesner RA, Murphy RB, Beachy MD, Ringnalda MN, Pollard WT, Dunietz BD, Cao YX (1999) J Phys Chem A 103:1913–1928

    Article  CAS  Google Scholar 

  56. Schaefer A, Horn H, Ahlrichs R (1992) J Chem Phys 97:2571–2577

    Article  CAS  Google Scholar 

  57. Schaefer A, Huber C, Ahlrichs R (1994) J Chem Phys 100:5829–5835

    Article  CAS  Google Scholar 

  58. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3094

    Article  CAS  PubMed  Google Scholar 

  59. de Visser SP (2006) Angew Chem Int Ed 45:1790–1793

    Article  Google Scholar 

  60. de Visser SP, Ogliaro F, Sharma PK, Shaik S (2002) Angew Chem Int Ed 41:1947–1951

    Article  Google Scholar 

  61. de Visser SP, Ogliaro F, Sharma PK, Shaik S (2002) J Am Chem Soc 124:11809–11826

    Article  PubMed  Google Scholar 

  62. Kumar D, de Visser SP, Sharma PK, Derat E, Shaik S (2005) J Biol Inorg Chem 10:181–189

    Article  CAS  PubMed  Google Scholar 

  63. de Visser SP (2006) J Biol Inorg Chem 11:168–178

    Article  CAS  PubMed  Google Scholar 

  64. Hirao H, Kumar D, Thile W, Shaik S (2005) J Am Chem Soc 127:13007–13018

    Article  CAS  PubMed  Google Scholar 

  65. Melander L, Saunders WH Jr (eds) (1987) Reaction rates of isotopic molecules, chap 2. Krieger, Malabar

  66. Wang Y, Kumar D, Yang CL, Han KL, Shaik S (2007) J Phys Chem B 111:7700–7710

    Article  CAS  PubMed  Google Scholar 

  67. Duncan WT, Bell RL, Truong TN (1998) J Comput Chem 19:1039–1052

    Article  CAS  Google Scholar 

  68. Zhang SW, Truong TN (2001) VKLab version 1.0. University of Utah, Salt Lake City

  69. Eckart C (1930) Phys Rev 35:1303–1309

    Article  CAS  Google Scholar 

  70. Neese F (2006) J Inorg Biochem 100:716–726

    Article  CAS  PubMed  Google Scholar 

  71. SchÖneboom JC, Neese F, Thiel W (2005) J Am Chem Soc 127:5840–5853

    Article  PubMed  Google Scholar 

  72. Shiak S, Hirao H, Kumar D (2007) Acc Chem Res 40:532–542

    Article  Google Scholar 

  73. Kazaryan A, Baerends EJ (2015) ACS Catal 5:1475–1488

    Article  CAS  Google Scholar 

  74. Ley D, Gerbig D, Schreiner PR (2012) Org Biomol Chem 10:3781–3790

    Article  CAS  PubMed  Google Scholar 

  75. Schreiner PR, Reisenauer HP, Ley D, Gerbig D, Wu CH, Allen WD (2011) Science 332:1300–1303

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by L2013214 (the general project supported by the education department of Liaoning province) and Open Project of SKLMRD-K201511 (Open Project of State Key Laboratory of Molecular Reaction Dynamics).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wang Yi or Wang Yong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 24671 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, W., Yuan, L., Kun, Y. et al. What factors influence the reactivity of C–H hydroxylation and C=C epoxidation by [FeIV(Lax)(1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane)(O)]n+ . J Biol Inorg Chem 20, 1123–1134 (2015). https://doi.org/10.1007/s00775-015-1294-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-015-1294-y

Keywords

Navigation