Skip to main content
Log in

Characterising the atypical 5′-CG DNA sequence specificity of 9-aminoacridine carboxamide Pt complexes

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

In this study, the DNA sequence specificity of four DNA-targeted 9-aminoacridine carboxamide Pt complexes was compared with cisplatin, using two specially constructed plasmid templates. One plasmid contained 5′-CG and 5′-GA insert sequences while the other plasmid contained a G-rich transferrin receptor gene promoter insert sequence. The damage profiles of each compound on the different DNA templates were quantified via a polymerase stop assay with fluorescently labelled primers and capillary electrophoresis. With the plasmid that contained 5′-CG and 5′-GA dinucleotides, the four 9-aminoacridine carboxamide Pt complexes produced distinctly different damage profiles as compared with cisplatin. These 9-aminoacridine complexes had greatly increased levels of DNA damage at CG and GA dinucleotides as compared with cisplatin. It was shown that the presence of a CG or GA dinucleotide was sufficient to reveal the altered DNA sequence selectivity of the 9-aminoacridine carboxamide Pt analogues. The DNA sequence specificity of the Pt complexes was also found to be similarly altered utilising the transferrin receptor DNA sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CE-LIF:

Capillary electrophoresis with laser-induced-fluorescence detection

Cisplatin:

cis-Diamminedichloridoplatinum(II)

9AmAcPtCl2 :

Dichlorido(N-2-[(2-aminoethyl)amino]-ethyl)-9-aminoacridine-4-carboxamide)platinum(II)

7-Methoxy-9AmAcPtCl2 :

Dichlorido(N-2-[(2-aminoethyl)amino]-ethyl)-7-methoxy-9-aminoacridine-4-carboxamide)platinum(II)

7-Fluoro-9AmAcPtCl2 :

Dichlorido(N-2-[(2-aminoethyl)amino]-ethyl)-7-fluoro-9-aminoacridine-4-carboxamide)platinum(II)

9-Ethanolamine-AcPtCl2 :

Dichlorido(N-2-[(2-aminoethyl)amino]-ethyl)-9-ethanolamine-acridine-4-carboxamide)platinum(II)

DMF:

Dimethylformamide

NER:

Nucleotide excision repair

TFRC:

Transferrin receptor

References

  1. Kelland L (2007) Nat Rev Cancer 7:573–584

    Article  CAS  PubMed  Google Scholar 

  2. Loehrer PJ, Einhorn LH (1984) Ann Intern Med 100:704–713

    Article  CAS  PubMed  Google Scholar 

  3. Jamieson ER, Lippard SJ (1999) Chem Rev 99:2467–2498

    Article  CAS  PubMed  Google Scholar 

  4. Barry MA, Behnke CA, Eastman A (1990) Biochem Pharmacol 40:2353–2362

    Article  CAS  PubMed  Google Scholar 

  5. Eastman A (1990) Cancer Cells 2:275–280

    CAS  PubMed  Google Scholar 

  6. Fichtinger-Schepman AMJ, van der Veer JL, den Hartog JHJ, Lohman PHM, Reedijk J (1985) Biochemistry 24:707–713

    Article  CAS  PubMed  Google Scholar 

  7. Yang DZ, van Boom S, Reedijk J, van Boom JH, Wang AHJ (1995) Biochemistry 34:12912–12920

    Article  CAS  PubMed  Google Scholar 

  8. Gelasco A, Lippard SJ (1998) Biochemistry 37:9230–9239

    Article  CAS  PubMed  Google Scholar 

  9. Corda Y, Anin MF, Leng M, Job D (1992) Biochemistry 31:1904–1908

    Article  CAS  PubMed  Google Scholar 

  10. Murray V, Whittaker J, McFayden WD (1998) Chem-Biol Interact 110:27–37

    Article  CAS  PubMed  Google Scholar 

  11. Murray V, Motyka H, England PR, Wickham G, Lee HH, Denny WA, McFadyen WD (1992) J Biol Chem 267:18805–18809

    CAS  PubMed  Google Scholar 

  12. Murray V, Motyka H, England PR, Wickham G, Lee HH, Denny WA, McFadyen WD (1992) Biochemistry 31:11812–11817

    Article  CAS  PubMed  Google Scholar 

  13. Murray V, Whittaker JK, Temple MD, McFadyen WD (1997) Biochem Biophys Acta 1354:261–271

    CAS  PubMed  Google Scholar 

  14. Murray V, Whittaker JK, McFadyen WD (1998) Chem Biol Interact 110:27–37

    Article  CAS  PubMed  Google Scholar 

  15. Paul M, Murray V (2011) J Biol Inorg Chem 16:735–743

    Article  CAS  PubMed  Google Scholar 

  16. Galea AM, Murray V (2008) Can Informat 6:315–355

    CAS  Google Scholar 

  17. Allardyce CS, Dyson PJ, Coffey J, Johnson N (2002) Rapid Commun Mass Spectrom 16:933–935

    Article  CAS  PubMed  Google Scholar 

  18. Khalaila I, Allardyce CS, Verma CS, Dyson PJ (2005) ChemBioChem 6:1788–1795

    Article  CAS  PubMed  Google Scholar 

  19. Piccart MJ, Lamb H, Vermorken JB (2001) Ann Oncol 12:1195–1203

    Article  CAS  PubMed  Google Scholar 

  20. Siddik ZH (2003) Oncogene 22:7265–7279

    Article  CAS  PubMed  Google Scholar 

  21. Smith DJ, Jaggi M, Zhang W, Galich A, Du C, Sterrett SP, Smith LM, Balaji KC (2006) Urology 67:1341–1347

    Article  PubMed  Google Scholar 

  22. Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, Castedo M, Kroemer G (2012) Oncogene 31:1869–1883

    Article  CAS  PubMed  Google Scholar 

  23. Chaney SG, Sancar A (1996) J Natl Cancer Inst 88:1346–1360

    Article  CAS  PubMed  Google Scholar 

  24. Furuta T, Ueda T, Aune G, Sarasin A, Kraemer KH, Pommier Y (2002) Cancer Res 62:4899–4902

    CAS  PubMed  Google Scholar 

  25. Weiss RB, Christian MC (1993) Drugs 46:360–377

    Article  CAS  PubMed  Google Scholar 

  26. Wheate NJ, Walker S, Craig GE, Oun R (2010) Dalt Transact 39:8113–8127

    Article  CAS  Google Scholar 

  27. Murray V (2000) Prog Nucl Acid Res Mol Biol 63:367–415

    Article  CAS  Google Scholar 

  28. Whittaker JK, McFadyen WD, Wickham G, Wakelin LPG, Murray V (1998) Nucl Acids Res 26:3933–3939

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Whittaker JK, McFadyen WD, Baguley BC, Murray V (2001) Anti-Cancer Drug Des 16:81–89

    CAS  Google Scholar 

  30. Temple MD, McFadyen WD, Holmes RJ, Denny WA, Murray V (2000) Biochemistry 39:5593–5599

    Article  CAS  PubMed  Google Scholar 

  31. Temple MD, Recabarren P, McFadyen WD, Holmes RJ, Denny WA, Murray V (2002) Biochim Biophys Acta 1574:223–230

    Article  CAS  PubMed  Google Scholar 

  32. Murray V, Chen JK, Galea AM (2014) Anti-Cancer Agents Med Chem 14:695–705

  33. Denny WA (1989) Anti-Cancer Drug Des 4:241–263

    CAS  Google Scholar 

  34. Carland M, Grannas MJ, Cairns MJ, Roknic VJ, Denny WA, McFadyen WD, Murray V (2010) J Inorg Biochem 104:815–819

    Article  CAS  PubMed  Google Scholar 

  35. Lee HH, Palmer BD, Baguley BC, Chin M, McFadyen WD, Wickham G, Thorsbourne-Palmer D, Wakelin LPG, Denny WA (1992) J Med Chem 35:2983–2987

    Article  CAS  PubMed  Google Scholar 

  36. Holmes RJ, McKeage MJ, Murray V, Denny WA, McFadyen WD (2001) J Inorg Biochem 85:209–217

    Article  CAS  PubMed  Google Scholar 

  37. Murray V (1989) Nucleic Acids Res 17:8889

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Murray V, Motyka H, England PR, Wickham G, Lee HH, Denny WA, McFadyen WD (1992) J Biol Chem 267:18805–18809

    CAS  PubMed  Google Scholar 

  39. Murray V, Nguyen TV, Chen JK (2012) Chem Biol Drug Des 80:1–8

    Article  CAS  PubMed  Google Scholar 

  40. Murray V, Kandasamy N (2012) Anti-Cancer Agents Med Chem 12:177–181

    Article  CAS  Google Scholar 

  41. Nguyen HTQ, Galea AM, Murray V (2013) Bioorg Med Chem Lett 23:1041–1045

    Article  CAS  PubMed  Google Scholar 

  42. White RJ, Phillips DR (1989) Biochemistry 28:4277–4283

    Article  CAS  PubMed  Google Scholar 

  43. Mattes WB, Hartley JA, Kohn KW (1986) Nucleic Acids Res 14:2971–2987

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Nambu A, Kumamoto Y (1995) Jpn J Urol 86:1221–1230

    CAS  Google Scholar 

  45. Adams A, Guss JM, Collyer CA, Denny WA, Wakelin LPG (1999) Biochemistry 38:9221–9233

    Article  CAS  PubMed  Google Scholar 

  46. Brabec V (2002) Prog Nucl Acid Res Mol Biol 71:1–68

    Article  CAS  Google Scholar 

  47. Budiman ME, Alexander RW, Bierbach U (2004) Biochemistry 43:8560–8567

    Article  CAS  PubMed  Google Scholar 

  48. Guddneppanavar R, Choudhury JR, Kheradi AR, Steen BD, Saluta G, Kucera GL, Day CS, Bierbach U (2007) J Med Chem 50:2259–2263

    Article  CAS  PubMed  Google Scholar 

  49. Chvalova K, Brabec V, Kasparkova J (2007) Nucleic Acids Res 35:1812–1821

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Malina J, Natile G, Brabec V (2013) Chem Eur J 19:11984–11991

Download references

Acknowledgments

Support of this work by the University of New South Wales, Science Faculty Research Grant Scheme, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Murray.

Electronic supplementary material

Below is the link to the electronic supplementary material.

775_2014_1144_MOESM1_ESM.pdf

Supplementary Figure 1: Electropherograms showing DNA adduct formation caused by cisplatin and the four analogues with the T7.TFRC.G10 plasmid. The relative fluorescence intensity is shown on the y-axis while the DNA fragment size (in nucleotides) is on the x-axis. The peaks indicate the intensity of DNA adduct binding of the Pt compound at the indicated DNA sequence sites on the DNA template. The telomere T7 region is shown T1-T7, left to right. The TFRC insert region includes 5′-GG, 5′-CGGGGG and 5′-GGGGG sequence elements. A) The DMF negative control; B) Treatment with 1.0 μM cisplatin; C) 0.1 μM 9AmAcPtCl2; D) 3.0 μM 7-methoxy-9AmAcPtCl2; E) 0.1 μM 7-fluoro-9AmAcPtCl2 and F) 0.1 μM 9-ethanolamine-9AcPtCl2. (PDF 1272 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kava, H.W., Galea, A.M., Md. Jamil, F. et al. Characterising the atypical 5′-CG DNA sequence specificity of 9-aminoacridine carboxamide Pt complexes. J Biol Inorg Chem 19, 997–1007 (2014). https://doi.org/10.1007/s00775-014-1144-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-014-1144-3

Keywords

Navigation