Skip to main content
Log in

Dynamic aggregation of the mid-sized gadolinium complex {Ph4[Gd(DTTA)(H2O)2] 3}

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A compound binding three Gd3+ ions, {Ph4[Gd(DTTA)(H2O)2] 3} (where H5DTTA is diethylenetriaminetetraacetic acid), has been synthesized around a hydrophobic center made up of four phenyl rings. In aqueous solution the molecules start to self-aggregate at concentrations well below 1 mM as shown by the increase of rotational correlation times and by the decrease of the translational self-diffusion constant. NMR spectra recorded in aqueous solution of the diamagnetic analogue {Ph4[Y(DTTA)(H2O)2] 3} show that the aggregation is dynamic and due to intermolecular π-stacking interactions between the hydrophobic aromatic centers. From estimations of effective radii, it can be concluded that the aggregates are composed of two to three monomers. The paramagnetic {Ph4[Gd(DTTA)(H2O)2] 3} exhibits concentration-dependent 1H NMR relaxivities with high values of approximately 50 mM−1 s−1 (30 MHz, 25 °C) at gadolinium concentrations above 20 mM. A combined analysis of 1H NMR dispersion profiles measured at different concentrations of the compound and 17O NMR data measured at various temperatures was performed using different theoretical approaches. The fitted parameters showed that the increase in relaxivity with increasing concentration of the compound is due to slower global rotational motion and an increase of the Lipari–Szabo order parameter S 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

AFA:

Anisotropic Florence approach

DO3A:

Tetraazacylcododecanetriacetic acid

DOSY:

Diffusion-ordered spectroscopy

DSS:

4,4-Dimethyl-4-silapentane-1-sulfonic acid

ESI:

Electrospray ionization

FFC:

Fast field cycling

H5DTTA:

Diethylenetriaminetetraacetic acid

HPLC:

High-performance liquid chromatography

MRI:

Magnetic resonance imaging

MS:

Mass spectrometry

NMRD:

NMR dispersion

Ph4DTTA3 :

1,3,5-Tris{4-[(bis{2-[bis(carboxymethyl)amino]ethyl}amino)methyl]phenyl}benzene

RFB:

Rast–Fries–Belorizky

SBM:

Solomon–Bloembergen–Morgan

ZFS:

Zero-field splitting

References

  1. Trattnig S, Pinker K, Ba-Ssalamah A, Nöbauer-Huhmann I-M (2006) Eur Radiol 16:1280–1287

    Article  PubMed  Google Scholar 

  2. Helm L (2010) Future Med Chem 2:385–396

    Article  CAS  PubMed  Google Scholar 

  3. Vaughan T, DelaBarre L, Snyder C, Tian J, Akgun C, Shrivastava D, Liu W, Olson C, Adriany G, Strupp J, Andersen P, Gopinath A, van de Moortele P-F, Garwood M, Ugurbil K (2006) Magn Reson Med 56:1274–1282

    Article  PubMed  Google Scholar 

  4. Merbach AE, Helm L, Tóth É (eds) (2013) The chemistry of contrast agents in medical magnetic resonance imaging. Wiley, Chichester

    Google Scholar 

  5. Nonat AM, Gateau C, Fries PH, Helm L, Mazzanti M (2012) Eur J Inorg Chem 2012:2049–2061. doi: 10.1002/ejic.201101162

  6. Costa J, Balogh E, Turcry V, Tripier R, Le Baccon M, Chuburu F, Handel H, Helm L, Tóth E, Merbach AE (2006) Chem Eur J 12:6841–6851

    Article  CAS  PubMed  Google Scholar 

  7. Livramento JB, Helm L, Sour A, O’Neil C, Merbach AE, Tóth É (2008) Dalton Trans 1195–1202

  8. Miéville P, Jaccard H, Reviriego F, Tripier R, Helm L (2011) Dalton Trans 40:4260–4267

    Google Scholar 

  9. Mastarone DJ, Harrison VSR, Eckermann AL, Parigi G, Luchinat C, Meade TJ (2011) J Am Chem Soc 133:5329–5337

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Costa J, Ruloff R, Burai L, Helm L, Merbach AE (2005) J Am Chem Soc 127:5147–5157

    Article  CAS  PubMed  Google Scholar 

  11. Livramento JB, Tóth É, Sour A, Borel A, Merbach AE, Ruloff R (2005) Angew Chem Int Ed 44:1480–1481

    Google Scholar 

  12. Livramento JB, Sour A, Borel A, Merbach AE, Tóth É (2006) Chem Eur J 12:989–1003

    Article  CAS  PubMed  Google Scholar 

  13. Moriggi L, Aebischer A, Cannizzo C, Sour A, Borel A, Bünzli J-CG, Helm L (2009) Dalton Trans 2088–2095

  14. Tóth É, Vauthey S, Pubanz D, Merbach AE (1996) Inorg Chem 35:3375–3379

    Article  Google Scholar 

  15. Lee T-M, Cheng TH, Ou MH, Chang CA, Liu G-C, Wang Y-M (2004) Magn Reson Chem 42:329–336

    Article  CAS  PubMed  Google Scholar 

  16. Platzek J, Niedballa U, Radüchel B (1996) DE 19508058:13

  17. Elmorsy SS, Pelter A, Smith K (1991) Tetrahedron Lett 32:4175–4176

    Article  CAS  Google Scholar 

  18. Plater MJ (1993) Synlett 405–406

  19. Cherioux F, Guyard L (2001) Adv Funct Mater 11:305–309

    Article  CAS  Google Scholar 

  20. Xia H, He J, Peng P, Zhou Y, Li Y, Tian W (2007) Tetrahedron Lett 48:5877–5881

    Article  CAS  Google Scholar 

  21. Corsi DM, Platas-Iglesias C, Van Bekkum H, Peters JA (2001) Magn Reson Chem 39:723–726

    Article  CAS  Google Scholar 

  22. Lide DR (ed) (2007) Handbook of chemistry and physics, 88th edn. CRC, Boca Raton

  23. Ferrante G, Sykora S (2005) In: van Eldik R, Bertini I (eds) Advances in inorganic chemistry, vol 57. Elsevier, San Diego, pp 405–470

  24. Ammann C, Meier P, Merbach AE (1982) J Magn Reson 46:319–321

    CAS  Google Scholar 

  25. Li L, Sotak CH (1991) J Magn Reson 92:411

    Google Scholar 

  26. Vold RL, Waugh JS, Klein MP, Phelps DE (1968) J Chem Phys 48:3831–3832

    Article  CAS  Google Scholar 

  27. Meiboom S, Gill D (1958) Rev Sci Instrum 29:688–691

    Article  CAS  Google Scholar 

  28. Solomon I (1955) Phys Rev 99:559–565

    Article  CAS  Google Scholar 

  29. Bloembergen N (1957) J Chem Phys 27:572–573

    Article  CAS  Google Scholar 

  30. Bloembergen N (1957) J Chem Phys 27:595

    Article  CAS  Google Scholar 

  31. Lipari G, Szabo A (1982) J Am Chem Soc 104:4546–4559

    Article  CAS  Google Scholar 

  32. Lipari G, Szabo A (1982) J Am Chem Soc 104:4559–4570

    Article  CAS  Google Scholar 

  33. Rast S, Fries PH, Belorizky E (2000) J Chem Phys 113:8724–8735

    Article  CAS  Google Scholar 

  34. Rast S, Borel A, Helm L, Belorizky E, Fries PH, Merbach AE (2001) J Am Chem Soc 123:2637–2644

    Article  CAS  PubMed  Google Scholar 

  35. Yerly F (2002) Optimiseur 3.0.0. EPFL, Lausanne

  36. Yerly F (2004) Visualiseur 2.3.6. EPFL, Lausanne

  37. Bertini I, Kowalewski J, Luchinat C, Nilsson T, Parigi G (1999) J Chem Phys 111:5795–5807

    Article  CAS  Google Scholar 

  38. Kruk D, Nilsson T, Kowalewski J (2001) Phys Chem Chem Phys 3:4907

    Article  CAS  Google Scholar 

  39. Kowalewski J, Kruk D, Parigi G (2005) In: Van Eldik R, Bertini I (eds) Advances in inorganic chemistry, vol 57. Elsevier, San Diego, pp 41–104

    Chapter  Google Scholar 

  40. Bertini I, Galas O, Luchinat C, Parigi G (1995) J Magn Reson A 113:151–158

    Article  CAS  Google Scholar 

  41. Caravan P, Parigi G, Chasse JM, Cloutier NJ, Ellison JJ, Lauffer RB, Luchinat C, McDermid SA, Spiller M, McMurry TJ (2007) Inorg Chem 46:6632–6639

    Article  CAS  PubMed  Google Scholar 

  42. Allinger NL, Yuh YH, Lii J-H (1989) J Am Chem Soc 111:8551–8566

    Article  CAS  Google Scholar 

  43. Lii J-H, Allinger NL (1989) J Am Chem Soc 111:8566–8575

    Article  CAS  Google Scholar 

  44. Lii J-H, Allinger NL (1989) J Am Chem Soc 111:8575–8582

    Google Scholar 

  45. Moriggi L, Cannizzo C, Prestinari C, Berrière F, Helm L (2008) Inorg Chem 47:8357–8366

    Article  CAS  PubMed  Google Scholar 

  46. Woessner DE (1996) In: Grant DM, Harris RK (eds) Encyclopedia of nuclear magnetic resonance. Wiley, Chichester, pp 1068–1084

    Google Scholar 

  47. Powell DH, Ni Dhubhghaill OM, Pubanz D, Helm L, Lebedev YS, Schlaepfer W, Merbach AE (1996) J Am Chem Soc 118:9333–9346

    Article  CAS  Google Scholar 

  48. Hwang LP, Freed JH (1975) J Chem Phys 63:4017–4025

    Article  CAS  Google Scholar 

  49. Freed JH (1978) J Chem Phys 69:4034–4037

    Article  Google Scholar 

  50. Ayant Y, Belorizky E, Alizon J, Gallice J (1975) J Phys 36:991–1004

    Article  CAS  Google Scholar 

  51. Belorizky E, Fries PH, Helm L, Kowalewski J, Kruk D, Sharp RR, Westlund P-O (2008) J Chem Phys 128:052307

    Article  Google Scholar 

  52. Dunand FA, Tóth É, Hollister R, Merbach AE (2001) J Biol Inorg Chem 6:247–255

    Article  CAS  PubMed  Google Scholar 

  53. Kowalewski J, Luchinat C, Nilsson T, Parigi G (2002) J Phys Chem A 106:7376–7382

    Article  CAS  Google Scholar 

  54. Dunand FA, Borel A, Merbach AE (2002) J Am Chem Soc 124:710–716

    Article  CAS  PubMed  Google Scholar 

  55. Dunand FA, Borel A, Helm L (2002) Inorg Chem Commun 5:811–815

    Article  CAS  Google Scholar 

  56. Yazyev OV, Helm L, Malkin VG, Malkina OL (2005) J Phys Chem A 109:10997–11005

    Article  CAS  PubMed  Google Scholar 

  57. Helm L (2006) Prog NMR Spectrosc 49:45–64

    Article  CAS  Google Scholar 

  58. Costa J, Tóth É, Helm L, Merbach AE (2005) Inorg Chem 44:4747–4755

    Article  CAS  PubMed  Google Scholar 

  59. Johnson CS Jr (1999) Prog NMR Spectrosc 34:203–256

    Article  CAS  Google Scholar 

  60. Morris KF, Johnson CS Jr (1992) J Am Chem Soc 114:3139–3141

    Article  CAS  Google Scholar 

  61. Laus S, Sitharaman B, Tóth É, Bolskar RD, Helm L, Asokan S, Wong MS, Wilson LJ, Merbach AE (2005) J Am Chem Soc 127:9368–9369

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Laus S, Sitharaman B, Tóth É, Bolskar RD, Helm L, Wilson LJ, Merbach AE (2007) J Phys Chem C 111:5633–5639

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Luc Reymond and Kai Johnsson at EFPL for provision of the analytical and preparative HPLC systems and their numerous amounts of advice and many ideas. Kim von Allmen is thanked for the fastidious purifications and various types of assistance. Joël Teuscher and Catherine Schütz at EPFL are thanked for the time they devoted to the dynamic light scattering experiments. This work was supported by the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lothar Helm.

Additional information

Responsible Editor: Valerie C. Pierre.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 165 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaccard, H., Miéville, P., Cannizzo, C. et al. Dynamic aggregation of the mid-sized gadolinium complex {Ph4[Gd(DTTA)(H2O)2] 3}. J Biol Inorg Chem 19, 145–159 (2014). https://doi.org/10.1007/s00775-013-1036-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-013-1036-y

Keywords

Navigation