Skip to main content
Log in

Reprogramming EF-hands for design of catalytically amplified lanthanide sensors

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 25 April 2013

Abstract

We recently reported that a computationally designed catalyst nicknamed AlleyCat facilitates C–H proton abstraction in Kemp elimination at neutral pH in a selective and calcium-dependent fashion by a factor of approximately 100,000 (Korendovych et al. in Proc. Natl. Acad. Sci. USA 108:6823, 2011). Kemp elimination produced a colored product that can be easily read out, thus making AlleyCat a catalytically amplified metal sensor for calcium. Here we report that metal-binding EF-hand motifs in AlleyCat could be redesigned to incorporate trivalent metal ions without significant loss of catalytic activity. Mutation of a single neutral residue at position 9 of each of the EF-hands to glutamate results in almost a two orders of magnitude improvement of selectivity for trivalent metal ions over calcium. Development of this new lanthanide-dependent switchable Kemp eliminase, named CuSeCat EE, provides the foundation for further selectivity improvement and broadening the scope of the repertoire of metals for sensing. A concerted effort in the design of switchable enzymes has many environmental, sensing, and metal ion tracking applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Domaille DW, Que EL, Chang CJ (2008) Nat Chem Biol 4:168–175

    Article  PubMed  CAS  Google Scholar 

  2. Luque de Castro MD, Herrera MC (2003) Biosens Bioelectron 18:279–294

    Google Scholar 

  3. Doi N, Yanagawa H (1999) FEBS Lett 453:305–307

    Google Scholar 

  4. Dwyer MA, Hellinga HW (2004) Curr Opin Chem Biol 14:495–504

    CAS  Google Scholar 

  5. Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY (1997) Nature 388:882–887

    Google Scholar 

  6. Zhu L, Anslyn E (2006) Angew Chem Int Ed 45:1190–1196

    Article  CAS  Google Scholar 

  7. Ostermeier M (2009) Curr Opin Struct Biol 19:442–448

    Article  PubMed  CAS  Google Scholar 

  8. Yoon HJ, Kuwabara J, Kim J-H, Mirkin CA (2010) Science 330:66–69

    Article  PubMed  CAS  Google Scholar 

  9. Korendovych IV, Kulp DW, Wu Y, Cheng H, Roder H, DeGrado WF (2011) Proc Natl Acad Sci USA 108:6823–6827

    Article  PubMed  CAS  Google Scholar 

  10. Blommel PG, Fox BG (2007) Protein Expr Purif 55:53–68

    Article  PubMed  CAS  Google Scholar 

  11. Studier FW (2005) Protein Expr Purif 41:207–234

    Article  PubMed  CAS  Google Scholar 

  12. Rothlisberger D, Khersonsky O, Wollacott AM, Jiang L, DeChancie J, Betker J, Gallaher JL, Althoff EA, Zanghellini A, Dym O, Albeck S, Houk KN, Tawfik DS, Baker D (2008) Nature 453:190–195

    Article  PubMed  Google Scholar 

  13. Urbauer JL, Short JH, Dow LK, Wand AJ (1995) Biochemistry 34:8099–8109

    Article  PubMed  CAS  Google Scholar 

  14. Radivoyevitch T (2009) Biol Direct 4:49

    Article  PubMed  Google Scholar 

  15. Masino L, Martin SR, Bayley PM (2000) Protein Sci 9:1519–1529

    Article  PubMed  CAS  Google Scholar 

  16. Marley J, Lu M, Bracken C (2001) J Biomol NMR 20:71–75

    Article  PubMed  CAS  Google Scholar 

  17. Klee CB, Crouch TH, Richman PG (1980) Ann Rev Biochem 49:489–515

    Article  PubMed  CAS  Google Scholar 

  18. Bertini I, Gelis I, Katsaros N, Luchinat C, Provenzani A (2003) Biochemistry 42:8011–8021

    Article  PubMed  CAS  Google Scholar 

  19. Le Clainche L, Plancque G, Amekraz B, Moulin C, Pradines-Lecomte C, Peltier G, Vita C (2003) J Biol Inorg Chem 8:334–340

    PubMed  Google Scholar 

  20. am Ende CW, Meng HY, Ye M, Pandey AK, Zondlo NJ (2010) ChemBioChem 11:1738–1747

  21. Zondlo SC, Gao F, Zondlo NJ (2010) J Am Chem Soc 132:5619–5621

    Article  PubMed  CAS  Google Scholar 

  22. Moroz OV, Moroz YS, Mack KL, Wu Y, Olsen AB, Cheng H, McLaughlin JM, Raymond EA, Roder H, Korendovych IV (in preparation)

  23. Drake SK, Falke JJ (1996) Biochemistry 35:1753–1760

    Article  PubMed  CAS  Google Scholar 

  24. Drake SK, Lee KL, Falke JJ (1996) Biochemistry 35:6697–6705

    Article  PubMed  CAS  Google Scholar 

  25. Falke JJ, Drake SK, Hazard AL, Peersen OB (1994) Q Rev Biophys 27:219–290

    Article  PubMed  CAS  Google Scholar 

  26. Ye YM, Lee H-W, Yang W, Shealy S, Yang JJ (2005) J Am Chem Soc 127:3743–3750

    Article  PubMed  CAS  Google Scholar 

  27. Chou JJ, Li S, Klee CB, Bax A (2001) Nat Struct Biol 8:990–997

    Article  PubMed  CAS  Google Scholar 

  28. O’Neil KT, DeGrado WF (1990) Trends Biochem Sci 15:59–64

    Article  PubMed  Google Scholar 

  29. Snyder EE, Buoscio BW, Falke JJ (1990) Biochemistry 29:3937–3943

    Article  PubMed  CAS  Google Scholar 

  30. Mulqueen P, Tingey JM, Horrocks WD Jr (1985) Biochemistry 24:6639–6645

    Article  PubMed  CAS  Google Scholar 

  31. Samish I, MacDermaid CM, Perez-Aguilar JS, Saven JG (2011) Annu Rev Phys Chem 62:129–149

    Article  PubMed  CAS  Google Scholar 

  32. DeGrado WF, Summa CM, Pavone V, Nastri F, Lombardi A (1999) Annu Rev Biochem 68:779–819

    Article  PubMed  CAS  Google Scholar 

  33. Das R, Baker D (2008) Annu Rev Biochem 77:363–382

    Article  PubMed  CAS  Google Scholar 

  34. Brustad EM, Arnold FH (2011) Curr Opin Chem Biol 15:201–210

    Article  PubMed  CAS  Google Scholar 

  35. Nitz M, Franz KJ, Maglathlin RL, Imperiali B (2003) ChemBioChem 4:272–276

    Article  PubMed  CAS  Google Scholar 

  36. Franz KJ, Nitz M, Imperiali B (2003) ChemBioChem 4:265–271

    Article  PubMed  CAS  Google Scholar 

  37. Nitz M, Sherawat M, Franz KJ, Peisach E, Allen KN, Imperiali B (2004) Angew Chem Int Ed 43:3682–3685

    Google Scholar 

Download references

Acknowledgments

The authors thank Syracuse University for providing funds for this study, the Beckman Foundation for a scholarship for K.L.M., and Robert P. Doyle for use of his CD instrument.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan V. Korendovych.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 5217 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mack, K.L., Moroz, O.V., Moroz, Y.S. et al. Reprogramming EF-hands for design of catalytically amplified lanthanide sensors. J Biol Inorg Chem 18, 411–418 (2013). https://doi.org/10.1007/s00775-013-0985-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-013-0985-5

Keywords

Navigation