Skip to main content
Log in

The metal ion requirements of Arabidopsis thaliana Glx2-2 for catalytic activity

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

In an effort to better understand the structure, metal content, the nature of the metal centers, and enzyme activity of Arabidopsis thaliana Glx2-2, the enzyme was overexpressed, purified, and characterized using metal analyses, kinetics, and UV–vis, EPR, and 1H NMR spectroscopies. Glx2-2-containing fractions that were purple, yellow, or colorless were separated during purification, and the differently colored fractions were found to contain different amounts of Fe and Zn(II). Spectroscopic analyses of the discrete fractions provided evidence for Fe(II), Fe(III), Fe(III)–Zn(II), and antiferromagnetically coupled Fe(II)–Fe(III) centers distributed among the discrete Glx2-2-containing fractions. The individual steady-state kinetic constants varied among the fractionated species, depending on the number and type of metal ion present. Intriguingly, however, the catalytic efficiency constant, k cat/K m, was invariant among the fractions. The value of k cat/K m governs the catalytic rate at low, physiological substrate concentrations. We suggest that the independence of k cat/K m on the precise makeup of the active-site metal center is evolutionarily related to the lack of selectivity for either Fe versus Zn(II) or Fe(II) versus Fe(III), in one or more metal binding sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

FPLC:

Fast performance liquid chromatography

Glx1:

Lactoylglutathione lyase

Glx2:

Hydroxyacylglutathione hydrolase

MOPS:

3-(N-Morpholino)propanesulfonic acid

SLG:

S-(2-Hydroxyacyl)glutathione

References

  1. Vander Jagt DL (1993) Biochem Soc Trans 21:522–527

    CAS  PubMed  Google Scholar 

  2. Mannervik B (2008) Drug Metabol Drug Interact 23:13–27

    CAS  PubMed  Google Scholar 

  3. Yang KW, Sobieski DN, Carenbauer AL, Crawford PA, Makaroff CA, Crowder MW (2003) Arch Biochem Biophys 414:271–278

    Article  CAS  PubMed  Google Scholar 

  4. Kalsi A, Kavarana MJ, Lu TF, Whalen DL, Hamilton DS, Creighton DJ (2000) J Med Chem 43:3981–3986

    Article  CAS  PubMed  Google Scholar 

  5. Tew KD (2000) Drug Resist Updates 3:263–264

    Article  CAS  Google Scholar 

  6. Vince R, Brownwell J, Akella LB (1999) Bioorg Med Chem Lett 9:853–856

    Article  CAS  PubMed  Google Scholar 

  7. Kavarana MJ, Kovaleva EG, Creighton DJ, Wollman MB, Eiseman JL (1999) J Med Chem 42:221–228

    Article  CAS  PubMed  Google Scholar 

  8. Elia AC, Chyan MK, Principato GB, Giovannini E, Rosi G, Norton SJ (1995) Biochem Mol Biol Int 35:763–771

    CAS  PubMed  Google Scholar 

  9. Thornalley PJ, Strath M, Wilson RJH (1994) Biochem Pharmacol 47:418–420

    Article  CAS  PubMed  Google Scholar 

  10. Chyan MK, Elia AC, Principato GB, Giovannini E, Rosi G, Norton SJ (1995) Enzyme Protein 48:164–173

    CAS  Google Scholar 

  11. Murthy NSRK, Bakeris T, Kavarana MJ, Hamilton DS, Lan Y, Creighton DJ (1994) J Med Chem 37:2161–2166

    Article  CAS  PubMed  Google Scholar 

  12. Norton SJ, Elia AC, Chyan MK, Gillis G, Frenzel C, Principato GB (1993) Biochem Soc Trans 21:545–548

    CAS  PubMed  Google Scholar 

  13. Chyan MK, Elia AC, Principato GB, Giovannini E, Rosi G, Norton SJ (1994) Enzyme Protein 48:164–173

    CAS  PubMed  Google Scholar 

  14. Rulli A, Carli L, Romani R, Baroni T, Giovannini E, Rosi G, Talesa V (2001) Breast Cancer Res Treat 66:67–72

    Article  CAS  PubMed  Google Scholar 

  15. Padmanabhan PK, Mukherjee A, Madhubala R (2006) Biochem J 393:227–234

    Article  CAS  PubMed  Google Scholar 

  16. Akoachere M, Iozef R, Rahlfs S, Deponte M, Mannervik B, Creighton DJ, Schirmer H, Becker K (2005) Biol Chem 386:41–52

    Article  CAS  PubMed  Google Scholar 

  17. Shinohara M, Thornalley PJ, Giardino I, Beisswenger P, Thorpe SR, Onorato J, Brownlee M (1998) J Clin Invest 101:1142–1147

    Article  CAS  PubMed  Google Scholar 

  18. Chen F, Wollmer MA, Hoerndli F, Munch G, Kuhla B, Rogaev EI, Tsolaki M, Papassotiropoulos A, Gotz J (2004) Proc Natl Acad Sci 101:7687–7692

    Article  CAS  PubMed  Google Scholar 

  19. Kuhla B, Boeck K, Schmidt A, Ogunlade V, Arendt T, Munch G, Luth HJ (2007) Neurobiol Aging 28:29–41

    Article  CAS  PubMed  Google Scholar 

  20. Xu Y, Chen X (2006) J Biol Chem 281:26702–26713

    Article  CAS  PubMed  Google Scholar 

  21. Cordell PA, Futers TS, Grant PJ, Pease RJ (2004) J Biol Chem 279:28653–28661

    Article  CAS  PubMed  Google Scholar 

  22. Maiti MK, Krishnasamy S, Owen HA, Makaroff CA (1997) Plant Mol Biol 35:471–481

    Article  CAS  PubMed  Google Scholar 

  23. Ridderstrom M, Saccucci F, Hellman U, Bergman T, Principato G, Mannervik B (1996) J Biol Chem 271:319–323

    Article  CAS  PubMed  Google Scholar 

  24. Crowder MW, Maiti MK, Banovic L, Makaroff CA (1997) FEBS Lett 418:351–354

    Article  CAS  PubMed  Google Scholar 

  25. Daiyasu H, Osaka K, Ishino Y, Toh H (2001) FEBS Lett 503:1–6

    Article  CAS  PubMed  Google Scholar 

  26. Marasinghe GPK, Sander IM, Bennett B, Periyannan G, Yang KW, Makaroff CA, Crowder MW (2005) J Biol Chem 280:40668–40675

    Article  CAS  PubMed  Google Scholar 

  27. Schilling O, Wenzel N, Naylor M, Vogel A, Crowder M, Makaroff C, Meyer-Klaucke W (2003) Biochemistry 42:11777–11786

    Article  CAS  PubMed  Google Scholar 

  28. Wenzel NF, Carenbauer AL, Pfiester MP, Schilling O, Meyer-Klaucke W, Makaroff CA, Crowder MW (2004) J Biol Inorg Chem 9:429–438

    Article  CAS  PubMed  Google Scholar 

  29. Cameron AD, Ridderstrom M, Olin B, Mannervik B (1999) Structure 7:1067–1078

    Article  CAS  PubMed  Google Scholar 

  30. Zang TM, Hollman DA, Crawford PA, Crowder MW, Makaroff CA (2001) J Biol Chem 276:4788–4795

    Article  CAS  PubMed  Google Scholar 

  31. Place AR, Powers DA (1979) Proc Natl Acad Sci 76:2354–2358

    Article  CAS  PubMed  Google Scholar 

  32. Guha MK, Vander Jagt DL, Creighton DJ (1988) Biochemistry 27:8818–8822

    Article  CAS  PubMed  Google Scholar 

  33. Colquhoun D (1969) Appl Stat 18:130–140

    Article  Google Scholar 

  34. Crowley PH (1975) J Theor Biol 50:461–475

    Article  CAS  PubMed  Google Scholar 

  35. Fersht AR (1974) Proc R Soc Lond B 187:397–496

    Article  CAS  PubMed  Google Scholar 

  36. Lippard SJ, Berg JM (1994) Principles of bioinorganic chemistry. University Science Books, Sausalito

  37. Averill BA, Davis JC, Burman S, Zirino T, Sanders-Loehr J, Loehr TM, Sage JT, Debrunner PG (1987) J Am Chem Soc 109:3760–3767

    Article  CAS  Google Scholar 

  38. Copik AJ, Waterson S, Swierczek SI, Bennett B, Holz RC (2005) Inorg Chem 44:1160–1162

    Article  CAS  PubMed  Google Scholar 

  39. Weisser JT, Nilges MJ, Sever MJ, Wilker JJ (2006) Inorg Chem 45:7736–7747

    Article  CAS  PubMed  Google Scholar 

  40. O’Toole MG, Bennett B, Mashuta MS, Grapperhaus CA (2009) Inorg Chem 48:7736–7747

    Google Scholar 

  41. Bou-Abdallah F, Chasteen ND (2008) J Biol Inorg Chem 13:15–24

    Article  CAS  PubMed  Google Scholar 

  42. Melino S, Capo C, Dragani B, Aceto A, Petruzzelli R (1998) Trends Biochem Sci 23:381-382

    Google Scholar 

  43. O’Young J, Sukdeo N, Honek JF (2007) Arch Biochem Biophys 459:20–26

    Article  PubMed  Google Scholar 

  44. Uotila L (1973) Biochemistry 12:3944–3951

    Article  CAS  PubMed  Google Scholar 

  45. Auld DS (1988) Methods for metal substitution, vol 158. Academic Press, New York, pp 71–79

    Google Scholar 

  46. Wommer S, Rival S, Heinz U, Galleni M, Frere JM, Franceschini N, Amicosante G, Rasmussen B, Bauer R, Adolph HW (2002) J Biol Chem 277:24142–24147

    Article  CAS  PubMed  Google Scholar 

  47. Cornish-Bowden A (1976) J Mol Biol 101:1–9

    Article  CAS  PubMed  Google Scholar 

  48. Limphong P, Crowder MW, Bennett B, Makaroff CA (2009) Biochem J 417:323–330

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (AI056231 to B.B., GM076199-01A2 to C.A.M., and EB001980 to the Medical College of Wisconsin), a Miami University/Volwiler Professorship (to M.W.C), and an Presidential Academic Enrichment fellowship (to P.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael W. Crowder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Limphong, P., McKinney, R.M., Adams, N.E. et al. The metal ion requirements of Arabidopsis thaliana Glx2-2 for catalytic activity. J Biol Inorg Chem 15, 249–258 (2010). https://doi.org/10.1007/s00775-009-0593-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-009-0593-6

Keywords

Navigation