Skip to main content
Log in

Infrared spectroscopic characterization of copper–polyhistidine from 1,800 to 50 cm−1: model systems for copper coordination

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Poly(l-histidine) and imidazole in the presence of copper cations have been investigated by means of Fourier transform infrared (IR) spectroscopy in the mid- and far-IR spectral range to establish specific marker bands of the copper-coordination site in metalloproteins as a function of pH as well as the effect of the coordination on the amino acid contributions. Whereas the well-known mid-IR region was specific for the secondary structure of the protein mimics, the far-IR region included contributions from the metal–ligand vibrations. The addition of copper led to secondary structure changes of poly(l-histidine) at neutral and basic pD and to specific shifts of ring vibrations. At pD 9.5 the addition of copper deprotonated the nitrogen atoms of the imidazole ring and the backbone. At neutral pD the copper cations were coordinated by the N3 atom of the imidazole ring. Copper–imidazole vibrations at neutral pD were observed at 154 and 128 cm−1. Signals observed at 313 and 162 cm−1 were assigned to metal–ligand vibrations arising from copper–poly(l-histidine) complexes with a negatively charged imidazole ring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

FTIR:

Fourier transform infrared

His:

Histidine

Im:

Imidazole

IR:

Infrared

4-MeIm:

4-Methylimidazole

PLH:

Poly(l-histidine)

υ:

Stretching vibration

δ:

Bending vibration

δdef :

Deformation vibration

γ:

Wagging vibration

τ:

Torsion vibration

References

  1. Dörr S, Schade U, Hellwig P, Ortolani M (2007) J Phys Chem B 111:14418–14422

    Article  PubMed  Google Scholar 

  2. Ebbinghaus S, Kim SJ, Heyden M, Yu X, Gruebele M, Leitner DM, Havenith M (2008) J Am Chem Soc 130:2374–2375

    Article  PubMed  CAS  Google Scholar 

  3. Brubach JB, Mermet A, Filabozzi A, Gerschel A, Roy P (2005) Chem Phys 122:184509–184515

    Google Scholar 

  4. Zelsmann HR (1995) J Mol Struct 350:95–114

    Article  CAS  Google Scholar 

  5. Williams PA, Blackburn NJ, Sanders D, Bellamy H, Stura EA, Fee JA, McRee DE (1999) Nat Struct Biol 6:509–516

    Article  PubMed  CAS  Google Scholar 

  6. Soulimane T, Buse G, Bourenkov GP, Bartunik HD, Huber R, Than ME (2000) EMBO J 19:1766–1776

    Article  PubMed  CAS  Google Scholar 

  7. Hunsicker-Wang LM, Heine A, Chen Y, Luna EP, Todaro T, Zhang YM, Williams PA, McRee DE, Hirst J, Stout D, Fee JA (2003) Biochemistry 42:7303–7317

    Article  PubMed  CAS  Google Scholar 

  8. Iwata S, Saynovits M, Link TA, Michel H (1996) Structure 4:567–570

    Article  PubMed  CAS  Google Scholar 

  9. Frieden E, Osaki S, Kobayashi H (1965) J Gen Physiol 49:213–252

    Article  PubMed  CAS  Google Scholar 

  10. Beinert H, Holm RH, Münck E (1997) Science 277:653–659

    Article  PubMed  CAS  Google Scholar 

  11. Meyer J (2008) J Biol Inorg Chem 13:157–170

    Article  PubMed  CAS  Google Scholar 

  12. Rees DC (2002) Annu Rev Biochem 71:221–246

    Article  PubMed  CAS  Google Scholar 

  13. Miura T, Satoh T, Hori-i A, Takeuchi H (1998) J Raman Spectrosc 29:41–47

    Article  CAS  Google Scholar 

  14. Wang X, Lee JS, Yang DS (2006) J Phys Chem A 110:12777–12784

    Article  PubMed  CAS  Google Scholar 

  15. Mesu JG, Visser T, Soulimani F, Weckhuysen BM (2005) Vib Spectrosc 39:114–125

    Article  CAS  Google Scholar 

  16. Mesu JG, Visser T, Soulimani F, Van Faassen EE, De Peinder P, Beale AM, Weckhuysen BM (2006) Inorg Chem 45:1960–1971

    Article  PubMed  CAS  Google Scholar 

  17. Deschamps P, Kulkarni PP, Gautam-Basak M, Sarkar B (2005) Coord Chem Rev 249:895–909

    Article  CAS  Google Scholar 

  18. Mesu GJ, Visser T, Beale AM, Soulimani F, Weckhuysen BM (2006) Chem Eur J 12:7167–7177

    Article  CAS  Google Scholar 

  19. Bi X, Yang KL (2007) Langmuir 23:11067–11073

    Article  PubMed  CAS  Google Scholar 

  20. Deschamps P, Kulkarni PP, Sarkar B (2004) Inorg Chem 43:3338–3340

    Article  PubMed  CAS  Google Scholar 

  21. Sigel H, McCormick DB (1971) J Am Chem Soc 93:2041–2044

    Article  PubMed  CAS  Google Scholar 

  22. Torreggiani A, Tamba M, Bonora S, Fini G (2003) Biopolymers 72:290–298

    Article  PubMed  CAS  Google Scholar 

  23. Drożdżewski P, Kordon E (2000) Spectrochim Acta A Mol Biomol Spectrosc 56:1299–1304

    Article  Google Scholar 

  24. Cheruzel LE, Cecil MR, Edison SE, Mashuta MS, Baldwin MJ, Buchanan RB (2006) Inorg Chem 45:3191–3202

    Article  PubMed  CAS  Google Scholar 

  25. Jakab NI, Gyurcsik B, Körtvélyesi T, Vosekalna I, Jensen J, Larsen E (2007) J Inorg Biochem 101:1376–1385

    Article  PubMed  CAS  Google Scholar 

  26. Kállay C, Várnagy K, Malandrinos G, Hadjiliadis N, Sanna D, Sόvágό I (2006) Dalton Trans 4545–4552

  27. White KN, Sen I, Szundi I, Landaverry YR, Bira LE, Konopelski JP, Olmstead MM, Einarsdόttir Ó (2007) Chem Commun 3252–3254

  28. Materazzi S, Kurdziel K, Tentolini U, Bacaloni A, Aquili S (2003) Thermochim Acta 395:133–137

    Article  CAS  Google Scholar 

  29. Materazzi S, D’Ascenzo G, Aquili S, Kadish KM, Bear JL (2003) Thermochim Acta 397:129–134

    Article  CAS  Google Scholar 

  30. Liang HC, Dahan M, Karlin KD (1999) Curr Opin Chem Biol 3:168–175

    Article  PubMed  CAS  Google Scholar 

  31. Inoue T, Sugawara H, Hamanaka S, Tsukui H, Suzuki E, Kohzuma T, Kai Y (1999) Biochemistry 38:6063–6069

    Article  PubMed  CAS  Google Scholar 

  32. Ellis MJ, Dodd FE, Strange RW, Prudêncio M, Sawers G, Eady RR, Hasnain SS (2001) Acta Crystallogr D Biol Crystallogr D57:1110–1118

    Article  CAS  Google Scholar 

  33. Zhang L, Koay M, Maher MJ, Xiao Z, Wedd AG (2006) J Am Chem Soc 128:5834–5850

    Article  PubMed  CAS  Google Scholar 

  34. Hough MA, Hasnain SS (2003) Structure 11:937–946

    Article  PubMed  CAS  Google Scholar 

  35. Colbert CL, Couture M, Eltis LD, Bolin JT (2000) Structure 8:1267–1278

    Article  PubMed  CAS  Google Scholar 

  36. Kolling DJ, Brunzelle JS, Lhee SM, Crofts AR, Nair SK (2007) Structure 15:29–38

    Article  PubMed  CAS  Google Scholar 

  37. Gao X, Wen X, Esser L, Quinn B, Yu L, Yu CA, Xia D (2003) Biochemistry 42:9067–9080

    Article  PubMed  CAS  Google Scholar 

  38. Iwaki M, Yakovlev G, Hirst J, Osyczka A, Dutton PL, Marshall D, Rich PR (2005) Biochemistry 44:4230–4237

    Article  PubMed  CAS  Google Scholar 

  39. Loeffen PW, Pettifer RF, Fillaux F, Kearley GJ (1995) J Chem Phys 103:8444–8455

    Article  CAS  Google Scholar 

  40. Hasegawa K, Ono TA, Noguchi T (2000) J Phys Chem B 104:4253–4265

    Article  CAS  Google Scholar 

  41. Hasegawa K, Ono TA, Noguchi T (2002) J Phys Chem A 106:3377–3390

    Article  CAS  Google Scholar 

  42. Pecht I, Levitzki A, Anbar M (1967) J Am Chem Soc 89:1587–1591

    Article  PubMed  CAS  Google Scholar 

  43. Levitzki A, Pecht I, Berger A (1972) J Am Chem Soc 94:6844–6849

    Article  PubMed  CAS  Google Scholar 

  44. Dovbeshko G, Berezhinsky L (1998) J Mol Struct 450:121–128

    Article  CAS  Google Scholar 

  45. Xie A, He Q, Miller L, Sclavi B, Chance MR (1999) Biopolymers 49:591–603

    Article  CAS  Google Scholar 

  46. Maklakov LI, Aksakova SV (1997) Russ Chem Rev 66:375–388

    Article  Google Scholar 

  47. Berthomieu C, Marboutin L, Dupeyrat F, Bouyer P (2006) Biopolymers 82:363–367

    Article  PubMed  CAS  Google Scholar 

  48. Dörr S, Hellwig P (2008) Vib Spectrosc 47:59–65

    Article  Google Scholar 

  49. Chu HA, Gardner MT, Hillier W, Babcock GT (2000) Photosynth Res 66:57–63

    Article  PubMed  CAS  Google Scholar 

  50. Kowalik-Jankowska T, Ruta M, Wiśniewska K, Łankiewicz L (2003) J Inorg Chem 95:270–282

    CAS  Google Scholar 

  51. Kállay C, Nagy Z, Várnagy K, Malandrinos G, Hadjiliadis N, Sόvágό I (2007) Bioinorg Chem Appl 30394

  52. Barth A (2000) Prog Biophys Mol Biol 74:141–173

    Article  PubMed  CAS  Google Scholar 

  53. Muehlinghaus J, Zundel G (1971) Biopolymers 10:711–719

    Article  PubMed  CAS  Google Scholar 

  54. Kong J, Yu S (2007) Acta Biochim Biophys Sin 39:549–559

    Article  PubMed  CAS  Google Scholar 

  55. Dong A, Huang P, Caughey WS (1990) Biochemistry 29:3303–3308

    Article  PubMed  CAS  Google Scholar 

  56. He WZ, Newell WR, Haris PI, Chapman D, Barber J (1991) Biochemistry 30:4552–4559

    Article  PubMed  CAS  Google Scholar 

  57. Kalnin NN, Baikalov IA, Venyaminov SY (1990) Biopolymers 30:1273–1280

    Article  PubMed  CAS  Google Scholar 

  58. Miyazawa T, Shimanouchi T, Mizushima SI (1958) J Chem Phys 29:611–616

    Article  CAS  Google Scholar 

  59. Jung C (2000) Mol Recogn 13:325–351

    Article  CAS  Google Scholar 

  60. Wolpert M, Hellwig P (2006) Spectrochim Acta A Mol Biomol Spectrosc 64:987–1001

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support by the ANR (agence nationale de recherche), the CNRS, and the French ministry for research is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Hellwig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El Khoury, Y., Hellwig, P. Infrared spectroscopic characterization of copper–polyhistidine from 1,800 to 50 cm−1: model systems for copper coordination. J Biol Inorg Chem 14, 23–34 (2009). https://doi.org/10.1007/s00775-008-0421-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-008-0421-4

Keywords

Navigation