Skip to main content
Log in

Distinct characteristics of Ag+ and Cd2+ binding to CopZ from Bacillus subtilis

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The chaperone CopZ together with the P-type ATPase transporter CopA constitute a copper-detoxification system in Bacillus subtilis that is commonly found in bacteria and higher cells. Previous studies of the regulation of the copZA operon showed that expression is significantly upregulated in response to elevated concentrations of environmental silver and cadmium, as well as copper. Here, we have used spectroscopic and bioanalytical methods to investigate in detail the capacity of CopZ to bind these metal ions (as Ag+ and Cd2+). We demonstrate that Ag+ binding mimics closely that of Cu+: Ag+-mediated dimerisation of the protein occurs, and distinct Ag+-bound species are formed at higher Ag+ loadings. Cd2+ also binds to CopZ, but exhibits significantly different behaviour. Cd2+-mediated dimerisation is only observed at low loadings, such that at 0.5 and one Cd2+ per CopZ the protein is present mainly in a monomeric form; and multinuclear higher-order forms of Cd2+–CopZ are not observed. Competition binding studies reveal that Ag+ binds with an affinity very similar to that of Cu+, while Cd2+ binding is significantly weaker. These data provide support for the proposal that CopZ may be involved in the detoxification of silver and cadmium, in addition to copper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

BCS:

Bathocuproine disulfonate

CD:

Circular dichroism

ICP-AES:

Inductively coupled plasma atomic emission spectroscopy

LMCT:

Ligand to metal charge transfer

Mops:

3-Morpholinopropanesulfonate

References

  1. Frausto da Silva JJR, Williams RJP (1991) The biological chemistry of the elements. Clarendon Press, Oxford

  2. Kaim W, Rall J (1996) Angew Chem Int Ed 35:43–60

    Article  CAS  Google Scholar 

  3. McMurray CT, Tainer JA (2003) Nat Gen 34:239–241

    Article  CAS  Google Scholar 

  4. Silver S (2003) FEMS Microbiol Rev 27:341–353

    Article  PubMed  CAS  Google Scholar 

  5. Malmström BG, Leckner J (1998) Curr Opin Chem Biol 2:286–292

    Article  PubMed  Google Scholar 

  6. Rosenzweig AC, O’Halloran TV (2000) Curr Opin Chem Biol 4:140–147

    Article  PubMed  CAS  Google Scholar 

  7. Solioz M, Odermatt A (1995) J Biol Chem 270:9217–9221

    Article  PubMed  CAS  Google Scholar 

  8. Nies DH (1999) Appl Microbiol Biotechnol 51:730–750

    Article  PubMed  CAS  Google Scholar 

  9. Nies DH (2003) FEMS Microbiol Rev 27:313–339

    Article  PubMed  CAS  Google Scholar 

  10. Banci L, Bertini I, Del Conte R, Markey J, Ruiz-Duenas FJ (2001) Biochemistry 40:15660–15668

    Article  PubMed  CAS  Google Scholar 

  11. Kihlken MA, Leech AP, Le Brun NE (2002) Biochem J 368:729–739

    Article  PubMed  CAS  Google Scholar 

  12. Banci L, Bertini L, Ciofi-Baffoni S, D’Onofrio M, Gonnelli L, Marhuenda-Egea FC, Ruiz-Duenas FJ (2002) J Mol Biol 317:415–429

    Article  PubMed  CAS  Google Scholar 

  13. Radford DS, Kihlken MA, Borrelly GPM, Harwood CR, Le Brun NE, Cavet JS (2003) FEMS Microbiol Lett 220:105–112

    Article  PubMed  CAS  Google Scholar 

  14. Gaballa A, Helmann JD (2003) Biometals 16:497–505

    Article  PubMed  CAS  Google Scholar 

  15. Banci L, Bertini I, Ciofi-Baffoni S, Gonnelli L, Su XC (2003) J Biol Chem 278:50506–50513

    Article  PubMed  CAS  Google Scholar 

  16. Banci L, Bertini I, Ciofi-Baffoni S, Gonnelli L, Su XC (2003) J Mol Biol 331:473–484

    Article  PubMed  CAS  Google Scholar 

  17. Singleton C, Banci L, Ciofi-Baffoni S, Tenori L, Kihlken MA, Boetzel R, Le Brun NE (2008) Biochem J 411:571–579

    Article  PubMed  CAS  Google Scholar 

  18. Banci L, Bertini I, Ciofi-Baffoni S, Del Conte R, Gonnelli L (2003) Biochemistry 42:1939–1949

    Article  PubMed  CAS  Google Scholar 

  19. Huffman DL, O’Halloran TV (2001) Ann Rev Biochem 70:677–701

    Article  PubMed  CAS  Google Scholar 

  20. Smaldone GT, Helmann JD (2007) Microbiology 153:4123–4128

    Article  PubMed  CAS  Google Scholar 

  21. Liu T, Ramesh A, Ma Z, Ward SK, Zhang LM, George GN, Talaat AM, Sacchettini JC, Giedroc DP (2007) Nat Chem Biol 3:60–68

    Article  PubMed  CAS  Google Scholar 

  22. Solovieva IM, Entian KD (2004) FEMS Microbiol Lett 236:115–122

    Article  PubMed  CAS  Google Scholar 

  23. Moore CM, Gaballa A, Hui M, Ye RW, Helmann JD (2005) Mol Microbiol 57:27–40

    Article  PubMed  CAS  Google Scholar 

  24. Solovieva IM, Entian KD (2002) FEMS Microbiol Lett 208:105–109

    Article  PubMed  CAS  Google Scholar 

  25. Xiao Z, Loughlin F, George GN, Howlett GJ, Wedd AG (2004) J Am Chem Soc 126:3081–3090

    Article  PubMed  CAS  Google Scholar 

  26. Zhou L, Singleton C, Le Brun NE (2008) Biochem J. doi: 10.1042/BJ20080467

  27. Leavitt S, Freire E (2001) Curr Opin Struct Biol 11:560–566

    Article  PubMed  CAS  Google Scholar 

  28. Laue TM, Shah BD, Ridgeway TM, Pelletier SL (1992) In: Harding SE, Rowe AJ, Horton J (eds) The analytical ultracentrifuge in biochemistry and polymer science. Royal Society of Chemistry, Cambridge, pp 90–125

    Google Scholar 

  29. Winge DR, Nielson KB, Gray WR, Hamer DH (1985) J Biol Chem 260:14464–14470

    PubMed  CAS  Google Scholar 

  30. Zelazowski AJ, Gasyna Z, Stillman MJ (1989) J Biol Chem 264:17091–17099

    PubMed  CAS  Google Scholar 

  31. Bofill R, Palacios O, Capdevila M, Cols N, González-Duarte R, Atrian S, González-Duarte P (1999) J Inorg Biochem 73:57–64

    Article  PubMed  CAS  Google Scholar 

  32. Willner H, Vašák M, Kägi JH (1987) Biochemistry 26:6287–6292

    Article  PubMed  CAS  Google Scholar 

  33. Hasler DW, Faller P, Vašák M (1998) Biochemistry 37:14966–14973

    Article  PubMed  CAS  Google Scholar 

  34. Henehan CJ, Pountney DL, Zerbe O, Vašák M (1993) Prot Sci 2:1756–1764

    Article  CAS  Google Scholar 

  35. Dallinger R, Wang Y, Berger B, Mackay EA, Kägi JHR (2001) Eur J Biochem 268:4126–4133

    Article  PubMed  CAS  Google Scholar 

  36. Palacios O, Polec-Pawlak K, Lobinski R, Capdevila M, González-Duarte P (2003) J Biol Inorg Chem 8:831–842

    Article  PubMed  CAS  Google Scholar 

  37. Li H, Otvos JD (1996) Biochemistry 35:13929–13936

    Article  PubMed  CAS  Google Scholar 

  38. Urvoas A, Moutiez M, Estienne C, Couprie J, Mintz E, Le Clainche L (2004) Eur J Biochem 271:993–1003

    Article  PubMed  CAS  Google Scholar 

  39. Cotton FA, Wilkinson G, Murillo CA, Bochmann M (1999) Advanced inorganic chemistry. Wiley Interscience, New York, pp 598–633

  40. Rulisek L, Vondrasek J (1998) J Inorg Biochem 71:115–127

    Article  PubMed  CAS  Google Scholar 

  41. Winge DR, Miklossy KA (1982) J Biol Chem 257:3471–3476

    PubMed  CAS  Google Scholar 

  42. Daniels MJ, Turner-Cavet JS, Selkirk R, Sun H, Parkinson JA, Sadler PJ, Robinson NJ (1998) J Biol Chem 273:22957–22961

    Article  PubMed  CAS  Google Scholar 

  43. Matzapetakis M, Farrer BT, Weng TC, Hemmingsen L, Penner-Hahn JE, Pecoraro VL (2002) J Am Chem Soc 124:8042–8054

    Article  PubMed  CAS  Google Scholar 

  44. Wernimont AK, Huffman DL, Lamb AL, O’Halloran TV, Rosenzweig AC (2000) Nat Struct Biol 7:766–771

    Article  PubMed  CAS  Google Scholar 

  45. Banci L, Bertini I, Ciofi-Baffoni S, Su XC, Miras R, Bal N, Mintz E, Catty P, Shokes JE, Scott RA (2006) J Mol Biol 356:638–650

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the BBSRC for the award of studentships to C.S. and M.A.K., and the Wellcome Trust for an award from the Joint Infra-structure Fund for equipment. We are grateful to Tom Clarke and David Richardson for assistance with analytical ultracentrifugation experiments (the analytical ultracentrifugation facility at the University of East Anglia was funded by the Wellcome Trust and HEFCE) and Myles Cheesman and Andrew Thomson for access to spectroscopic instrumentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nick E. Le Brun.

Additional information

Margaret A. Kihlken and Chloe Singleton contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (PDF 25 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kihlken, M.A., Singleton, C. & Le Brun, N.E. Distinct characteristics of Ag+ and Cd2+ binding to CopZ from Bacillus subtilis . J Biol Inorg Chem 13, 1011–1023 (2008). https://doi.org/10.1007/s00775-008-0388-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-008-0388-1

Keywords

Navigation