Skip to main content
Log in

Control of redox reactivity of flavin and pterin coenzymes by metal ion coordination and hydrogen bonding

  • Minireview
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The electron-transfer activities of flavin and pterin coenzymes can be fine-tuned by coordination of metal ions, protonation and hydrogen bonding. Formation of hydrogen bonds with a hydrogen-bond receptor in metal–flavin complexes is made possible depending on the type of coordination bond that can leave the hydrogen-bonding sites. The electron-transfer catalytic functions of flavin and pterin coenzymes are described by showing a number of examples of both thermal and photochemical redox reactions, which proceed by controlling the electron-transfer reactivity of coenzymes with metal ion binding, protonation and hydrogen bonding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Scheme 2
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Scheme 3
Scheme 4

Similar content being viewed by others

References

  1. Müller F (ed) (1991) CRC, Boca Raton, vol 1–3

  2. Ghisla S, Massey V (1989) Eur J Biochem 181:1–17

    Article  PubMed  CAS  Google Scholar 

  3. Bruice TC (1980) Acc Chem Res 13:256–262

    Article  CAS  Google Scholar 

  4. Walsh C (1980) Acc Chem Res 13:148–155

    Article  CAS  Google Scholar 

  5. Blakley RL, Benkovic SJ (1985) Chemistry and biochemistry of pterins. Wiley, New York

    Google Scholar 

  6. Niemz A, Rotello V (1999) Acc Chem Res 32:44–52

    Article  CAS  Google Scholar 

  7. Rotello V (2001) In: Balzani V (ed) Electron transfer in chemistry, vol 5. Wiley-VCH, Weinheim, pp 68–87

  8. Breinlinger E, Rotello VJ (1997) J Am Chem Soc 119:1165–1166

    Article  CAS  Google Scholar 

  9. Greaves MD, Rotello VM (1997) J Am Chem Soc 119:10569–10572

    Article  CAS  Google Scholar 

  10. Cuello AO, McIntosh CM, Rotello VM (2000) J Am Chem Soc 122:3517–3521

    Article  CAS  Google Scholar 

  11. Breinlinger EC, Niemz A, Rotello V (1995) J Am Chem Soc 117:5379–5380

    Article  CAS  Google Scholar 

  12. Palfey B, Moran G, Entsch B, Ballou D, Massey V (1999) Biochemistry 38:1153–1158

    Article  PubMed  CAS  Google Scholar 

  13. Breinlinger EC, Keenan CJ, Rotello VM (1998) J Am Chem Soc 120:8606–8609

    Article  CAS  Google Scholar 

  14. Hasford J, Kemnitzer W, Rizzo C (1997) J Org Chem 62:5244–5245

    Article  CAS  Google Scholar 

  15. Hemmerich P, Lauterwein J (1973) In: Eichhorn GL (ed) The structure and reactivity of flavin–metal complexes, in inorganic biochemistry. Elsevier, Amsterdam, pp 1168–1190

  16. Clarke MJ (1984) Comments Inorg Chem 3:133–151

    Article  CAS  Google Scholar 

  17. Cadet J, Vigny P (1990) In: Morrison H (ed) Bioorganic photochemistry, vol 1. Wiley, New York, pp 1–272

  18. Heelis PF (1982) Chem Soc Rev 11:15–39

    Article  CAS  Google Scholar 

  19. Tollin G (1995) J Bioenerg Biomembr 27:303–309

    Article  PubMed  CAS  Google Scholar 

  20. Tollin G (2001) In: Balzani V (ed) Electron transfer in chemistry. Wiley-VCH, Weinheim, pp 202–231

  21. Heelis PF (1991) In: Müller F (ed) Chemistry and biochemistry of flavoenzymes, vol 1. CRC, Boca Raton, pp 171–193

  22. Fukuzumi S, Tanaka T (1988) In: Fox MA, Chanon M (ed) Photoinduced electron transfer, part C. Elsevier, Amsterdam, pp 636–687

  23. Fukuzumi S (1997) Bull Chem Soc Jpn 70:1–28

    Article  CAS  Google Scholar 

  24. Fukuzumi S (1992) In: Mariano PS (ed) Advances in electron transfer chemistry, vol 2. JAI, Greenwich, pp 67–175

  25. Fukuzumi S, Itoh S (1999) In: Neckers DC (ed) Advances in photochemistry, vol 25. Wiley-Interscience, New York, pp 107–172

  26. Burgstaller P, Famulok M (1997) J Am Chem Soc 119:1137–1138

    Article  CAS  Google Scholar 

  27. Burgmayer SJN (1998) Struct Bonding 92:67–119

    CAS  Google Scholar 

  28. Pfleiderer W (1992) J Heterocycl Chem 29:583–605

    CAS  Google Scholar 

  29. Crane BR, Arvai AS, Ghosh DK, Wu C, Getzoff ED, Stuehr DJ, Tainer JA (1998) Science 279:2121–2126

    Article  PubMed  CAS  Google Scholar 

  30. Hemmerich P, Veeger C, Wood HCS (1965) Angew Chem Int Ed Engl 4:671–687

    Article  PubMed  CAS  Google Scholar 

  31. Clarke MJ (1980) Rev Inorg Chem 2:27–51

    CAS  Google Scholar 

  32. Kaim W, Schwederski B, Heilmann O, Hornung FM (1999) Coord Chem Rev 182:323–342

    Article  Google Scholar 

  33. Fukuzumi S, Kuroda S, Tanaka T (1984) Chem Lett 417–420

  34. Fukuzumi S, Kuroda S, Tanaka T (1985) J Am Chem Soc 107:3020–3027

    Article  CAS  Google Scholar 

  35. Fukuzumi S, Yasui K, Suenobu T, Ohkubo K, Fujitsuka M, Ito O (2001) J Phys Chem A 105:10501–10510

    Article  CAS  Google Scholar 

  36. Fukuzumi S, Ohkubo K (2000) Chem Eur J 6:4532–4535

    Article  CAS  Google Scholar 

  37. Ohkubo K, Menon SC, Orita A, Otera J, Fukuzumi S (2003) J Org Chem 68:4720–4726

    Article  PubMed  CAS  Google Scholar 

  38. Fukuzumi S, Ohkubo K (2002), J Am Chem Soc 124:10270–10271

    Article  PubMed  CAS  Google Scholar 

  39. Rehm D, Weller A. (1970) Isr J Chem 8:259–271

    CAS  Google Scholar 

  40. Fukuzumi S, Fujita M, Otera J, Fujita Y (1992) J Am Chem Soc 114:10271

    Article  CAS  Google Scholar 

  41. Niemz A, Imbriglio J, Rotello VM (1997) J Am Chem Soc 119:887–892

    Article  CAS  Google Scholar 

  42. Eberlein G, Bruice TC (1983) J Am Chem Soc 105:6685–6697

    Article  CAS  Google Scholar 

  43. Nanni EJ Jr, Sawyer DT, Ball SS, Bruice TC (1981) J Am Chem Soc 103:2797–2802

    Article  CAS  Google Scholar 

  44. Maeda-Yorita K, Massey V (1993) J Biol Chem 268:4134–4144

    PubMed  CAS  Google Scholar 

  45. Fukuzumi S, Okamoto T (1994) J Chem Soc Chem Commun 521–522

  46. Heelis PF, Parsons BJ, Phillips GO, McKeller JF (1981) Photochem Photobiol 33:7

    Article  CAS  Google Scholar 

  47. Grodowski MS, Veyret B, Weiss K (1977) Photochem Photobiol 26:341–352

    Article  CAS  Google Scholar 

  48. Fukuzumi S, Okamoto T, Otera J (1994) J Am Chem Soc 116:5503–5504

    Article  CAS  Google Scholar 

  49. Fukuzumi S, Satoh N, Okamoto T, Yasui K, Suenobu T, Seko Y, Fujitsuka M, Ito O (2001) J Am Chem Soc 123:7756–7766

    Article  PubMed  CAS  Google Scholar 

  50. Fukuzumi S, Kuroda S, Tanaka T (1986) J Chem Soc Perkin Trans 2 25–29

    Google Scholar 

  51. Davies AG, Ingold KU, Roberts BP, Tudor R (1971) J Chem Soc B 698–712

  52. Korcek S, Watts GB, Ingold KU (1972) J Chem Soc Perkin Trans 2 242–248

    Google Scholar 

  53. Brindley PB, Scotton MJ (1981) J Chem Soc Perkin Trans 2 419–423

    Google Scholar 

  54. Fukuzumi S, Mochida M, Kochi JK (1979) J Am Chem Soc 101:5961–5972

    Article  CAS  Google Scholar 

  55. Fukuzumi S, Wong CL, Kochi JK (1980) J Am Chem Soc 102:2928–2939

    Article  CAS  Google Scholar 

  56. Howard JA (1972) Adv Free Radic Chem 4:49–173

    CAS  Google Scholar 

  57. Clarke MJ, Dowling M, Garafalo AR, Brennan TF (1980) J Biol Chem 255:3472–3481

    PubMed  CAS  Google Scholar 

  58. Miyazaki S, Ohkubo K, Kojima T, Fukuzumi S (2007) Angew Chem Int Ed 46:905–908

    Article  CAS  Google Scholar 

  59. Koizumi T, Tomon T, Tanaka K (2005) J Organomet Chem 690:4272–4279

    Article  CAS  Google Scholar 

  60. Harvey BG, Arif AM, Ernst RD (2004) Polyhedron 23:2725–2731

    Article  CAS  Google Scholar 

  61. Koizumi T, Tomon T, Tanaka K (2003) Bull Chem Soc Jpn 76:1969–1975

    Article  CAS  Google Scholar 

  62. Staniewicz RJ, Hendricker DG (1977) J Am Chem Soc 99:6581–6588

    Article  CAS  Google Scholar 

  63. Eriksson LEG, Ethrenberg A (1964) Acta Chem Scand 18:1437–1453

    Google Scholar 

  64. Heilmann O, Hornung FM, Kaim W, Fiedler J (1996) J Chem Soc Faraday Trans 92:4233–4238

    Article  CAS  Google Scholar 

  65. Româo MJ, Archer M, Moura Moura JJG, LeGall J, Engh R, Schneider M, Hof P, Huber R (1995) Science 270:1170–1176

    Article  PubMed  Google Scholar 

  66. Schindelin H, Kisker C, Hilton J, Rajagopalan KV, Rees DC (1996) Science 272:1615–1621

    Article  PubMed  CAS  Google Scholar 

  67. Almendra MJ, Brondino CD, Gavel O, Pereira AS, Tavares P, Bursakov S, Duarte R, Caldeira J, Moura JJG, Moura I (1999) Biochemistry 38:16366–16372

    Article  PubMed  CAS  Google Scholar 

  68. Burgmayer SJN, Arkin MR, Bostick L, Dempster S, Everett KM, Layton HL, Paul KE, Rogge C, Rheingold AL (1995) J Am Chem Soc 117:5812–5823

    Article  CAS  Google Scholar 

  69. Burgmayer SJN, Kaufmann HL, Fortunato G, Hug P, Fisher B (1999) Inorg Chem 38:2607–2613

    Article  CAS  Google Scholar 

  70. Meckenstock RU, Krieger R, Ensign S, Kroneck PMH, B. Schink B (1999) Eur J Biochem 264:176–182

    Article  PubMed  CAS  Google Scholar 

  71. Hornung FM, Kaim W (1994) J Chem Soc Faraday Trans 90:2909–2912

    Article  CAS  Google Scholar 

  72. Odani A, Masuda H, Inukai K, Yamauchi O (1992) J Am Chem Soc 114:6294–6300

    Article  CAS  Google Scholar 

  73. Funahashi Y, Hara Y, Masuda H, Yamauchi O (1997) Inorg Chem 36:3869–3875

    Article  CAS  Google Scholar 

  74. Abelleira A, Galang RD, Clarke MJ (1990) Inorg Chem 29:633–639

    Article  CAS  Google Scholar 

  75. Bessenbacher C, Vogler C, Kaim W (1989) Inorg Chem 28:4645–4648

    Article  CAS  Google Scholar 

  76. Kojima T, Sakamoto T, Matsuda Y, Ohkubo K, Fukuzumi S (2003) Angew Chem Int Ed 42:4951–4954

    Article  CAS  Google Scholar 

  77. Miayzaki S, Kojima T, Sakamoto T, Matsumoto T, Ohkubo K, Fukuzumi S (2008) Inorg Chem 47:333–343

    Article  CAS  Google Scholar 

  78. Perkinson J, Brodie S, Yoon K, Mosny K, Carroll PJ, Morgan TV, Burgmayer SJN (1991) Inorg Chem 30:719–727

    Article  CAS  Google Scholar 

  79. Hornung FM, Heilmann O, Kaim W, Zalis S, Fiedler J (2000) Inorg Chem 39:4052–4058

    Article  PubMed  CAS  Google Scholar 

  80. Fukuzumi S, Kuroda S, Goto T, Ishikawa K, Tanaka T (1989) J Chem Soc Perkin Trans 2:1047–1053

    Google Scholar 

  81. Dudley KH, Ehrenberg A, Hemmerich P, Müller F (1964) Helv Chim Acta 47:1354

    Article  CAS  Google Scholar 

  82. Fukuzumi S, Tanii K, Tanaka T (1989) Chem Lett 35–38

  83. Ishikawa K, Fukuzumi S, Goto T, Tanaka T (1990) J Am Chem Soc 112:1577–1584

    Article  CAS  Google Scholar 

  84. Fukuzumi S, Ishikawa K, Tanaka T (1985) J Chem Soc Dalton Trans 899–904

  85. Ishikawa K, Fukuzumi S, Tanaka T (1989) Inorg Chem 28:1661–1665

    Article  CAS  Google Scholar 

  86. Fukuzumi S, Tanii K, Tanaka T (1989) J Chem Soc Chem Commun 816–818

  87. Fukuzumi S, Kuroda S (1999) Res Chem Intermed 25:789–811

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the contributions of their collaborators and coworkers mentioned in the references. The authors acknowledge continuous support of their study by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunichi Fukuzumi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukuzumi, S., Kojima, T. Control of redox reactivity of flavin and pterin coenzymes by metal ion coordination and hydrogen bonding. J Biol Inorg Chem 13, 321–333 (2008). https://doi.org/10.1007/s00775-008-0343-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-008-0343-1

Keywords

Navigation