Skip to main content
Log in

The performance of hybrid DFT for mechanisms involving transition metal complexes in enzymes

  • Commentary
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The accuracy of density functional theory with the B3LYP functional is reviewed for systems of relevance to transition-metal-containing enzymes. Calculated energies are commonly within 3–5 kcal/mol of the correct values; however, some exceptions have appeared in the literature and are discussed here. For example, the binding of NO and that of O2 to metal centers have for some time been known to be underestimated. Most barriers for chemical reactions are overestimated except those involving hydrogen (or proton) transfer, which instead tend to be underestimated. A minor general improvement of the accuracy can probably be obtained by slightly reducing the amount of exact exchange in the B3LYP functional.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  2. Siegbahn PEM (2003) Q Rev Biophys 36:91–145

    Article  PubMed  CAS  Google Scholar 

  3. Siegbahn PEM (2001) J Comput Chem 22:1634–1645

    Article  CAS  Google Scholar 

  4. Blomberg MRA, Siegbahn PEM (2006) J Comput Chem 27:1373–1384

    Article  PubMed  CAS  Google Scholar 

  5. Siegbahn PEM, Borowski T (2006) Acc Chem Res (submitted)

  6. Bauschlicher CW Jr, Ricca A, Partridge H, Langhoff SR (1997) In: Chong DP (ed) Recent advances in density functional methods, part II. World Scientific, Singapore, p 165

  7. Siegbahn PEM, Blomberg MRA (1999) Annu Rev Phys Chem 50:221–249

    Article  PubMed  CAS  Google Scholar 

  8. Lundberg M, Siegbahn PEM (2005) J Comput Chem 26:661–667

    Article  PubMed  CAS  Google Scholar 

  9. Vydrov OA, Scuseria GE (2005) J Chem Phys 122:184107

    Article  PubMed  CAS  Google Scholar 

  10. Lundberg M, Siegbahn PEM (2005) J Chem Phys 122:224103

    Article  PubMed  CAS  Google Scholar 

  11. Lundberg M, Siegbahn PEM (2005) J Phys Chem B 109:10513–10520

    Article  PubMed  CAS  Google Scholar 

  12. Blomberg MRA, Siegbahn PEM, Babcock GT (1998) J Am Chem Soc 120:8812–8824

    Article  CAS  Google Scholar 

  13. Friesner RA, Knoll EH, Cao Y (2006) J Chem Phys (in press)

  14. Noodleman L, Case DA (1992) Adv Inorg Chem 38:423–470

    Article  CAS  Google Scholar 

  15. Edgecombe KE, Becke AD (1995) Chem Phys Lett 244:427–432

    Article  CAS  Google Scholar 

  16. Siegbahn PEM (1996) Adv Chem Phys 93:333–387

    Article  CAS  Google Scholar 

  17. Ghosh A, Taylor PR (2003) Curr Opin Chem Biol 7:113–124

    Article  PubMed  CAS  Google Scholar 

  18. Gherman BF, Cramer CJ (2004) Inorg Chem 43:7281–7283

    Article  PubMed  CAS  Google Scholar 

  19. Johansson AJ, Blomberg MRA, Siegbahn PEM (2006) Inorg Chem 45:1491–1497

    Article  PubMed  CAS  Google Scholar 

  20. Fry HC, Scaltrito DV, Karlin KD, Meyer GJ (2003) J Am Chem Soc 125:11866–11871

    Article  PubMed  CAS  Google Scholar 

  21. Zhang CX, Kaderli S, Costas M, Kim E-I, Neuhold Y-M, Karlin KD, Zuberbuhler AD (2003) Inorg Chem 42:1807–1824

    Article  PubMed  CAS  Google Scholar 

  22. Blomberg LM, Blomberg MRA, Siegbahn PEM (2005) J Inorg Biochem 99:949–958

    Article  PubMed  CAS  Google Scholar 

  23. Bassan A, Borowski T, Siegbahn PEM (2004) J Chem Soc Dalton Trans:3153–3162

  24. Jensen KP, Ryde U (2003) J Phys Chem B 107:7539–7545

    CAS  Google Scholar 

  25. Blomberg LM, Blomberg MRA, Siegbahn PEM (2006) Biochim Biophys Acta 1757:31–46

    Article  PubMed  CAS  Google Scholar 

  26. Volbeda A, Hol WG (1989) J Mol Biol 209:249–279

    Article  PubMed  CAS  Google Scholar 

  27. Magnus KA, Hazes B, Ton-That H, Bonaventura C, Bonaventura J, Hol WG (1994) Proteins Struct Funct Genet 19:302–309

    Article  PubMed  CAS  Google Scholar 

  28. Flock M, Pierloot K (1999) J Phys Chem A 103:95–102

    Article  CAS  Google Scholar 

  29. Siegbahn PEM (2003) J Biol Inorg Chem 8:577–585

    PubMed  CAS  Google Scholar 

  30. Siegbahn PEM (2003) Faraday Symp Chem Soc 124:289–296

    CAS  Google Scholar 

  31. Pierloot K (2001) In: Cundari TR (ed) Computational organometallic chemistry. Dekker, New York, pp 123–158

    Google Scholar 

  32. Rode MF, Werner HJ (2005) Theor Chem Acc 114:309–317

    Article  CAS  Google Scholar 

  33. Cramer JC, Wloch M, Piecuch P, Puzzarini C, Gagliardi L (2006) J Phys Chem A 110:1991–2004

    Article  PubMed  CAS  Google Scholar 

  34. Siegbahn PEM (2003) J Biol Inorg Chem 8:567–576

    PubMed  CAS  Google Scholar 

  35. Raghavachari K, Trucks GW (1989) J Chem Phys 91:1062–1065

    Article  Google Scholar 

  36. Siegbahn PEM, Svensson M, Boussard PJE (1995) J Chem Phys 102:5377–5386

    Article  CAS  Google Scholar 

  37. Blomberg MRA, Siegbahn PEM, Svensson M (1996) J Chem Phys 104:9546–9554

    Article  CAS  Google Scholar 

  38. Siegbahn PEM, Haeffner F (2004) J Am Chem Soc 126:8919–8932

    Article  PubMed  CAS  Google Scholar 

  39. Reiher M, Salomon O, Hess BA (2001) Theor Chem Acc 107:48–55

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per E. M. Siegbahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siegbahn, P.E.M. The performance of hybrid DFT for mechanisms involving transition metal complexes in enzymes. J Biol Inorg Chem 11, 695–701 (2006). https://doi.org/10.1007/s00775-006-0137-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-006-0137-2

Keywords

Navigation