Skip to main content

Advertisement

Log in

Comparison of parathyroid hormone and strontium ranelate in combination with whole-body vibration in a rat model of osteoporosis

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

We investigated the combinatorial effects of whole-body vertical vibration (WBVV) with the primarily osteoanabolic parathyroid hormone (PTH) and the mainly antiresorptive strontium ranelate (SR) in a rat model of osteoporosis. Ovariectomies were performed on 76 three-month-old Sprague–Dawley rats (OVX, n = 76; NON-OVX, n = 12). After 8 weeks, the ovariectomized rats were divided into 6 groups. One group (OVX + PTH) received daily injections of PTH (40 µg/kg body weight/day) for 6 weeks. Another group (OVX + SR) was fed SR-supplemented chow (600 mg/kg body weight/day). Three groups (OVX + VIB, OVX + PTH + VIB, and OVX + SR + VIB) were treated with WBVV twice a day at 70 Hz for 15 min. Two groups (OVX + PTH + VIB, OVX + SR + VIB) were treated additionally with PTH and SR, respectively. The rats were killed at 14 weeks post-ovariectomy. The lumbar vertebrae and femora were removed for biomechanical and morphological assessment. PTH produced statistically significant improvements in biomechanical and structural properties, including bone mineral density (BMD) and trabecular bone quality. In contrast, SR treatment exerted mild effects, with significant effects in cortical thickness only. SR produced no significant improvement in biomechanical properties. WBVV as a single or an adjunctive therapy produced no significant improvements. In conclusion, vibration therapy administered as a single or dual treatment had no significant impact on bones affected by osteoporosis. PTH considerably improved bone quality in osteoporosis cases and is superior to treatment with SR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Osterkamp R (2005) Population developments in Germany until 2050. Chirurg 76:10–18

    Article  CAS  PubMed  Google Scholar 

  2. Ellegaard M, Kringelbach T, Syberg S, Petersen S, Jensen JE, Bruel A, Jorgensen NR, Schwarz P (2013) The effect of PTH(1-34) on fracture healing during different loading conditions. J Bone Miner Res 28:2145–55

  3. Li YF, Zhou CC, Li JH, Luo E, Zhu SS, Feng G, Hu J (2012) The effects of combined human parathyroid hormone (1-34) and zoledronic acid treatment on fracture healing in osteoporotic rats. Osteoporos Int 23:1463–1474

    Article  CAS  PubMed  Google Scholar 

  4. Tsuchie H, Miyakoshi N, Kasukawa Y, Aonuma H, Shimada Y (2013) Intermittent administration of human parathyroid hormone before osteosynthesis stimulates cancellous bone union in ovariectomized rats. Tohoku J Exp Med 229:19–28

    Article  CAS  PubMed  Google Scholar 

  5. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, Hodsman AB, Eriksen EF, Ish-Shalom S, Genant HK, Wang O, Mitlak BH (2001) Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 344:1434–1441

    Article  CAS  PubMed  Google Scholar 

  6. Aspenberg P (2013) Annotation: parathyroid hormone and fracture healing. Acta Orthop 84:4–6

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fahrleitner-Pammer A, Langdahl BL, Marin F, Jakob F, Karras D, Barrett A, Ljunggren O, Walsh JB, Rajzbaum G, Barker C, Lems WF (2011) Fracture rate and back pain during and after discontinuation of teriparatide: 36-month data from the European Forsteo Observational Study (EFOS). Osteoporos Int 22:2709–2719

    Article  CAS  PubMed  Google Scholar 

  8. Jakob F, Oertel H, Langdahl B, Ljunggren O, Barrett A, Karras D, Walsh JB, Fahrleitner-Pammer A, Rajzbaum G, Barker C, Lems WF, Marin F (2012) Effects of teriparatide in postmenopausal women with osteoporosis pre-treated with bisphosphonates: 36-month results from the European Forsteo Observational Study. Eur J Endocrinol 166:87–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. DVO (2014) Prophylaxe, Diagnostik und Therapie der Osteoporose bei Männern ab dem 60. Lebensjahr und bei postmenopausalen Frauen. http://www.dv-osteologie.org/uploads/Leitlinie%202014/DVO-Leitlinie%20Osteoporose%202014%20Kurzfassung%20und%20Langfassung%2018.%2009.%202014.pdf

  10. Vahle JL, Sato M, Long GG, Young JK, Francis PC, Engelhardt JA, Westmore MS, Linda Y, Nold JB (2002) Skeletal changes in rats given daily subcutaneous injections of recombinant human parathyroid hormone (1-34) for 2 years and relevance to human safety. Toxicol Pathol 30:312–321

    Article  CAS  PubMed  Google Scholar 

  11. Vestergaard P (2014) New strategies for osteoporosis patients previously managed with strontium ranelate. Ther Adv Musculoskelet Dis 6:217–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nardone V, D’Asta F, Brandi ML (2014) Pharmacological management of osteogenesis. Clinics (Sao Paulo) 69:438–446

    Article  Google Scholar 

  13. Stepan JJ (2013) Strontium ranelate: in search for the mechanism of action. J Bone Miner Metab 31:606–612

    Article  CAS  PubMed  Google Scholar 

  14. Meunier PJ, Roux C, Seeman E, Ortolani S, Badurski JE, Spector TD, Cannata J, Balogh A, Lemmel EM, Pors-Nielsen S, Rizzoli R, Genant HK, Reginster JY (2004) The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med 350:459–468

  15. Reginster JY, Seeman E, De Vernejoul MC, Adami S, Compston J, Phenekos C, Devogelaer JP, Curiel MD, Sawicki A, Goemaere S, Sorensen OH, Felsenberg D, Meunier PJ (2005) Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: treatment of peripheral osteoporosis (TROPOS) study. J Clin Endocrinol Metab 90:2816–2822

    Article  CAS  PubMed  Google Scholar 

  16. EMA (2014) PRAC recommends suspending use of Protelos/Osseor (strontium ranelate). http://www.ema.europa.eu/docs/en_GB/document_library/Press_release/2014/01/WC500159375.pdf

  17. Frost HM (2000) The Utah paradigm of skeletal physiology: an overview of its insights for bone, cartilage and collagenous tissue organs. J Bone Miner Metab 18:305–316

    Article  CAS  PubMed  Google Scholar 

  18. Rubin C, Turner AS, Mallinckrodt C, Jerome C, McLeod K, Bain S (2002) Mechanical strain, induced noninvasively in the high-frequency domain, is anabolic to cancellous bone, but not cortical bone. Bone 30:445–452

    Article  CAS  PubMed  Google Scholar 

  19. Tezval M, Biblis M, Sehmisch S, Schmelz U, Kolios L, Rack T, Stuermer KM, Stuermer EK (2011) Improvement of femoral bone quality after low-magnitude, high-frequency mechanical stimulation in the ovariectomized rat as an osteopenia model. Calcif Tissue Int 88:33–40

    Article  CAS  PubMed  Google Scholar 

  20. Komrakova M, Sehmisch S, Tezval M, Ammon J, Lieberwirth P, Sauerhoff C, Trautmann L, Wicke M, Dullin C, Stuermer KM, Stuermer EK (2013) Identification of a vibration regime favorable for bone healing and muscle in estrogen-deficient rats. Calcif Tissue Int 92:509–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sehmisch S, Galal R, Kolios L, Tezval M, Dullin C, Zimmer S, Stuermer KM, Stuermer EK (2009) Effects of low-magnitude, high-frequency mechanical stimulation in the rat osteopenia model. Osteoporos Int 20:1999–2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Habermann B, Kafchitsas K, Olender G, Augat P, Kurth A (2010) Strontium ranelate enhances callus strength more than PTH 1-34 in an osteoporotic rat model of fracture healing. Calcif Tissue Int 86:82–89

    Article  CAS  PubMed  Google Scholar 

  23. Li YF, Luo E, Feng G, Zhu SS, Li JH, Hu J (2010) Systemic treatment with strontium ranelate promotes tibial fracture healing in ovariectomized rats. Osteoporos Int 21:1889–1897

    Article  CAS  PubMed  Google Scholar 

  24. Liu CC, Kalu DN (1990) Human parathyroid hormone-(1-34) prevents bone loss and augments bone formation in sexually mature ovariectomized rats. J Bone Miner Res 5:973–982

    Article  CAS  PubMed  Google Scholar 

  25. Komrakova M, Stuermer EK, Werner C, Wicke M, Kolios L, Sehmisch S, Tezval M, Daub F, Martens T, Witzenhausen P, Dullin C, Stuermer KM (2010) Effect of human parathyroid hormone hPTH (1-34) applied at different regimes on fracture healing and muscle in ovariectomized and healthy rats. Bone 47:480–492

    Article  CAS  PubMed  Google Scholar 

  26. Stuermer EK, Komrakova M, Sehmisch S, Tezval M, Dullin C, Schaefer N, Hallecker J, Stuermer KM (2014) Whole body vibration during fracture healing intensifies the effects of estradiol and raloxifene in estrogen-deficient rats. Bone 64:187–194

    Article  CAS  PubMed  Google Scholar 

  27. Sehmisch S, Erren M, Rack T, Tezval M, Seidlova-Wuttke D, Richter J, Wuttke W, Stuermer KM, Stuermer EK (2009) Short-term effects of parathyroid hormone on rat lumbar vertebrae. Spine 34:2014–2021

    Article  PubMed  Google Scholar 

  28. Tezval M, Stuermer EK, Sehmisch S, Rack T, Stary A, Stebener M, Konietschke F, Stuermer KM (2010) Improvement of trochanteric bone quality in an osteoporosis model after short-term treatment with parathyroid hormone: a new mechanical test for trochanteric region of rat femur. Osteoporos Int 21:251–261

    Article  CAS  PubMed  Google Scholar 

  29. Sehmisch S, Erren M, Kolios L, Tezval M, Seidlova-Wuttke D, Wuttke W, Stuermer KM, Stuermer EK (2010) Effects of isoflavones equol and genistein on bone quality in a rat osteopenia model. Phytother Res 24:S168–S174

    Article  PubMed  Google Scholar 

  30. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610

    Article  CAS  PubMed  Google Scholar 

  31. Dempster DW, Compston JE, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR, Parfitt AM (2013) Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 28:2–17

    Article  PubMed  PubMed Central  Google Scholar 

  32. Komrakova M, Stuermer EK, Tezval M, Stuermer KM, Dullin C, Schmelz U, Doell C, Durkaya-Burchhardt N, Fuerst B, Genotte T, Sehmisch S (2014) Evaluation of twelve vibration regimes applied to improve spine properties in ovariectomized rats. Bone Reports doi:10.1016/j.bonr.2014.12.001

  33. Sehmisch S, Komrakova M, Kottwitz L, Dullin C, Schmelz U, Stuermer KM, Tezval M (2015) Effects of urocortin on spine? Results from the rat osteopenia model. Osteologie 2:99–106

    Google Scholar 

  34. Tezval M, Hansen S, Schmelz U, Komrakova M, Stuermer KM, Sehmisch S (2015) Effect of urocortin on strength and microarchitecture of osteopenic rat femur. J Bone Miner Metab 33:154-60

  35. Kanis JA, McCloskey EV, Johansson H, Cooper C, Rizzoli R, Reginster JY (2013) European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 24:23–57

    Article  CAS  PubMed  Google Scholar 

  36. Slatkovska L, Alibhai SM, Beyene J, Cheung AM (2010) Effect of whole-body vibration on BMD: a systematic review and meta-analysis. Osteoporos Int 21:1969–1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Brouwers JE, van Rietbergen B, Ito K, Huiskes R (2010) Effects of vibration treatment on tibial bone of ovariectomized rats analyzed by in vivo micro-CT. J Orthop Res 28:62–69

    PubMed  Google Scholar 

  38. van der Jagt OP, van der Linden JC, Waarsing JH, Verhaar JA, Weinans H (2012) Low-magnitude whole body vibration does not affect bone mass but does affect weight in ovariectomized rats. J Bone Miner Metab 30:40–46

    Article  PubMed  Google Scholar 

  39. Judex S, Lei X, Han D, Rubin C (2007) Low-magnitude mechanical signals that stimulate bone formation in the ovariectomized rat are dependent on the applied frequency but not on the strain magnitude. J Biomech 40:1333–1339

    Article  PubMed  Google Scholar 

  40. Lynch MA, Brodt MD, Stephens AL, Civitelli R, Silva MJ (2011) Low-magnitude whole-body vibration does not enhance the anabolic skeletal effects of intermittent PTH in adult mice. J Orthop Res 29:465–472

    Article  CAS  PubMed  Google Scholar 

  41. Altman AR, de Bakker CM, Tseng WJ, Chandra A, Qin L, Liu XS (2015) Enhanced individual trabecular repair and its mechanical implications in parathyroid hormone and alendronate treated rat tibial bone. J Biomech Eng 137 doi: 10.1115/1.4028823

  42. Ma YL, Zeng QQ, Porras LL, Harvey A, Moore TL, Shelbourn TL, Dalsky GP, Wronski TJ, Aguirre JI, Bryant HU, Sato M (2011) Teriparatide [rhPTH (1-34)], but not strontium ranelate, demonstrated bone anabolic efficacy in mature, osteopenic, ovariectomized rats. Endocrinology 152:1767–1778

    Article  CAS  PubMed  Google Scholar 

  43. Recker RR, Marin F, Ish-Shalom S, Moricke R, Hawkins F, Kapetanos G, de la Pena MP, Kekow J, Farrerons J, Sanz B, Oertel H, Stepan J (2009) Comparative effects of teriparatide and strontium ranelate on bone biopsies and biochemical markers of bone turnover in postmenopausal women with osteoporosis. J Bone Miner Res 24:1358–1368

    Article  CAS  PubMed  Google Scholar 

  44. Bruel A, Vegger JB, Raffalt AC, Andersen JE, Thomsen JS (2013) PTH (1-34), but not strontium ranelate counteract loss of trabecular thickness and bone strength in disuse osteopenic rats. Bone 53:51–58

    Article  CAS  PubMed  Google Scholar 

  45. Hamdy NA (2009) Strontium ranelate improves bone microarchitecture in osteoporosis. Rheumatology (Oxford) 48:iv9–13

  46. Brun LR, Galich AM, Vega E, Salerni H, Maffei L, Premrou V, Costanzo PR, Sarli MA, Rey P, Larroude MS, Moggia MS, Brance ML, Sánchez A, Grupo Argentino de Estudio del Ranelato de Estroncio (GAERE) (2014) Strontium ranelate effect on bone mineral density is modified by previous bisphosphonate treatment. Springerplus 3:676

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ferrari S (2010) Comparing and contrasting the effects of strontium ranelate and other osteoporosis drugs on microarchitecture. Osteoporos Int 21:S437–S442

    Article  CAS  PubMed  Google Scholar 

  48. Gallacher SJ, Dixon T (2010) Impact of treatments for postmenopausal osteoporosis (bisphosphonates, parathyroid hormone, strontium ranelate, and denosumab) on bone quality: a systematic review. Calcif Tissue Int 87:469–484

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The present study was funded by the German Research Foundation (DFG SE 1966/5-1). The authors are grateful to R. Castro-Machguth and A. Witt for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. B. Hoffmann.

Ethics declarations

Conflict of interest

All authors have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoffmann, D.B., Sehmisch, S., Hofmann, A.M. et al. Comparison of parathyroid hormone and strontium ranelate in combination with whole-body vibration in a rat model of osteoporosis. J Bone Miner Metab 35, 31–39 (2017). https://doi.org/10.1007/s00774-016-0736-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-016-0736-0

Keywords

Navigation