Skip to main content

Advertisement

Log in

Identification of a progenitor cell population destined to form fracture fibrocartilage callus in Dickkopf-related protein 3–green fluorescent protein reporter mice

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Fracture healing is a complex biological process involving the proliferation of mesenchymal progenitor cells, and chondrogenic, osteogenic, and angiogenic differentiation. The mechanisms underlying the proliferation and differentiation of mesenchymal progenitor cells remain unclear. Here, we demonstrate Dickkopf-related protein 3 (Dkk3) expression in periosteal cells using Dkk3–green fluorescent protein reporter mice. We found that proliferation of mesenchymal progenitor cells began in the periosteum, involving Dkk3-positive cell proliferation near the fracture site. In addition, Dkk3 was expressed in fibrocartilage cells together with smooth muscle α-actin and Col3.6 in the early phase of fracture healing as a cell marker of fibrocartilage cells. Dkk3 was not expressed in mature chondrogenic cells or osteogenic cells. Transient expression of Dkk3 disappeared in the late phase of fracture healing, except in the superficial periosteal area of fracture callus. The Dkk3 expression pattern differed in newly formed type IV collagen positive blood vessels and the related avascular tissue. This is the first report that shows Dkk3 expression in the periosteum at a resting state and in fibrocartilage cells during the fracture healing process, which was associated with smooth muscle α-actin and Col3.6 expression in mesenchymal progenitor cells. These fluorescent mesenchymal lineage cells may be useful for future studies to better understand fracture healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Grcevic D, Pejda S, Matthews BG et al (2012) In vivo fate mapping identifies mesenchymal progenitor cells. Stem Cell 30:187–196

    Article  CAS  Google Scholar 

  2. Kalajzic Z, Li H, Wang LP et al (2008) Use of an alpha-smooth muscle actin GFP reporter to identify an osteoprogenitor population. Bone 43:501–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Krupnik VE, Sharp JD, Jiang C et al (1999) Functional and structural diversity of the human Dickkopf gene family. Gene 238:301–313

    Article  CAS  PubMed  Google Scholar 

  4. Bafico A, Liu G, Yaniv A, Gazit A, Aaronson SA (2001) Novel mechanism of Wnt signalling inhibition mediated by Dickkopf-1 interaction with LRP6/Arrow. Nat Cell Biol 3:683–686

    Article  CAS  PubMed  Google Scholar 

  5. Mao B, Wu W, Li Y et al (2001) LDL-receptor-related protein 6 is a receptor for Dickkopf proteins. Nature 411:321–325

    Article  CAS  PubMed  Google Scholar 

  6. Glinka A, Wu W, Delius H, Monaghan AP, Blumenstock C, Niehrs C (1998) Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391:357–362

    Article  CAS  PubMed  Google Scholar 

  7. del Barco Barrantes I, Davidson G, Grone HJ, Westphal H, Niehrs C (2003) Dkk1 and noggin cooperate in mammalian head induction. Gene Dev 17:2239–2244

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mao B, Niehrs C (2003) Kremen2 modulates Dickkopf2 activity during Wnt/LRP6 signaling. Gene 302:179–183

    Article  CAS  PubMed  Google Scholar 

  9. Mao B, Wu W, Davidson G et al (2002) Kremen proteins are Dickkopf receptors that regulate Wnt/β-catenin signalling. Nature 417:664–667

    Article  CAS  PubMed  Google Scholar 

  10. Yamaguchi Y, Itami S, Watabe H et al (2004) Mesenchymal–epithelial interactions in the skin: increased expression of dickkopf1 by palmoplantar fibroblasts inhibits melanocyte growth and differentiation. J Cell Biol 165:275–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Montero-Pedrazuela A, Bernal J, Guadano-Ferraz A (2003) Divergent expression of type 2 deiodinase and the putative thyroxine-binding protein p29, in rat brain, suggests that they are functionally unrelated proteins. Endocrinology 144:1045–1052

    Article  CAS  PubMed  Google Scholar 

  12. Sato S, Inoue T, Terada K et al (2007) Dkk3-Cre BAC transgenic mouse line: a tool for highly efficient gene deletion in retinal progenitor cells. Genesis 45:502–507

    Article  CAS  PubMed  Google Scholar 

  13. Kobayashi K, Ouchida M, Tsuji T et al (2002) Reduced expression of the REIC/Dkk-3 gene by promoter-hypermethylation in human tumor cells. Gene 282:151–158

    Article  CAS  PubMed  Google Scholar 

  14. Hsieh SY, Hsieh PS, Chiu CT, Chen WY (2004) Dickkopf-3/REIC functions as a suppressor gene of tumor growth. Oncogene 23:9183–9189

    CAS  PubMed  Google Scholar 

  15. Sakaguchi M, Kataoka K, Abarzua F et al (2009) Overexpression of REIC/Dkk-3 in normal fibroblasts suppresses tumor growth via induction of interleukin-7. J Biol Chem 284:14236–14244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Barrantes Idel B, Montero-Pedrazuela A, Guadano-Ferraz A et al (2006) Generation and characterization of dickkopf3 mutant mice. Mol Cell Biol 26:2317–2326

    Article  PubMed  Google Scholar 

  17. Bilic-Curcic I, Kronenberg M, Jiang X et al (2005) Visualizing levels of osteoblast differentiation by a two-color promoter-GFP strategy: type I collagen-GFPcyan and osteocalcin-GFPtpz. Genesis 43:87–98

    Article  CAS  PubMed  Google Scholar 

  18. Yokota T, Kawakami Y, Nagai Y et al (2006) Bone marrow lacks a transplantable progenitor for smooth muscle type α-actin-expressing cells. Stem Cell 24:13–22

    Article  Google Scholar 

  19. Chan LL, Huang J, Hagiwara Y, Aguila L, Rowe D (2014) Discriminating multiplexed GFP reporters in primary articular chondrocyte cultures using image cytometry. J Fluoresc 24:1041–1053

    Article  PubMed  Google Scholar 

  20. Bonnarens F, Einhorn TA (1984) Production of a standard closed fracture in laboratory animal bone. J Orthop Res 2:97–101

    Article  CAS  PubMed  Google Scholar 

  21. Dacic S, Kalajzic I, Visnjic D, Lichtler AC, Rowe DW (2001) Col1a1-driven transgenic markers of osteoblast lineage progression. J Bone Miner Res 16:1228–1236

    Article  CAS  PubMed  Google Scholar 

  22. Ushiku C, Adams DJ, Jiang X, Wang L, Rowe DW (2010) Long bone fracture repair in mice harboring GFP reporters for cells within the osteoblastic lineage. J Orthop Res 28:1338–1347

    Article  CAS  PubMed  Google Scholar 

  23. Bornstein P, Sage H (1980) Structurally distinct collagen types. Annu Rev Biochem 49:957–1003

    Article  CAS  PubMed  Google Scholar 

  24. Tavella S, Bellese G, Castagnola P et al (1997) Regulated expression of fibronectin, laminin and related integrin receptors during the early chondrocyte differentiation. J Cell Sci 110:2261–2270

    CAS  PubMed  Google Scholar 

  25. Aslan H, Ravid-Amir O, Clancy BM et al (2006) Advanced molecular profiling in vivo detects novel function of dickkopf-3 in the regulation of bone formation. J Bone Miner Res 21:1935–1945

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by JSPS KAKENHI (25870039), the Department of Defense (DAMD W81XWH07-2-0085), and the National Institutes of Health (AR052374).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Mori.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

774_2015_711_MOESM1_ESM.tif

Fig. S1 Fibrocartilage proliferation and Dkk3 green expression at day 7 after fracture. Left picture shows an image of safranin-O and hematoxylin staining, mature cartilage cells are positive for safranin-O red (arrow) (×10 magnification). Right picture shows Dkk3-green GFP image, Dkk3-green is not positive on the mature fibrocartilage cells, is expressed on the superficial area of mature fibrocartilage cells (arrow head) (×10 magnification). (TIFF 3417 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mori, Y., Adams, D., Hagiwara, Y. et al. Identification of a progenitor cell population destined to form fracture fibrocartilage callus in Dickkopf-related protein 3–green fluorescent protein reporter mice. J Bone Miner Metab 34, 606–614 (2016). https://doi.org/10.1007/s00774-015-0711-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-015-0711-1

Keywords

Navigation