Skip to main content

Advertisement

Log in

Role of osteoclasts in heterotopic ossification enhanced by fibrodysplasia ossificans progressiva-related activin-like kinase 2 mutation in mice

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Fibrodysplasia ossificans progressiva (FOP) is a disorder of skeletal malformations and progressive heterotopic ossification. The constitutively activating mutation (R206H) of the bone morphogenetic protein type 1 receptor, activin-like kinase 2 (ALK2), is responsible for the pathogenesis of FOP. Although transfection of the causal mutation of FOP into myoblasts enhances osteoclast formation by transforming growth factor-β (TGF-β), the role of osteoclasts in heterotopic ossification is unknown. We therefore examined the effects of alendronate, SB431542 and SB203580 on heterotopic ossification induced by the causal mutation of FOP. Total bone mineral content as well as numbers of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated and alkaline phosphatase (ALP)-positive cells in heterotopic bone were significantly higher in muscle tissues implanted with ALK2 (R206H)-transfected mouse myoblastic C2C12 cells than in the tissues implanted with empty vector-transfected cells in nude mice. Alendronate, an aminobisphosphonate, did not affect total mineral content or numbers of TRAP-positive multinucleated and ALP-positive cells in heterotopic bone, which were enhanced by the implantation of ALK2 (R206H)-transfected C2C12 cells, although it significantly decreased serum levels of cross-linked C-telopeptide of type I collagen, a bone resorption index. Moreover, neither SB431542, an inhibitor of TGF-β receptor type I kinase, nor SB203580, an inhibitor of p38 mitogen-activated protein kinase, affected the increase in heterotopic ossification due to the implantation of ALK2 (R206H)-transfected C2C12 cells. In conclusion, the present study indicates that osteoclast inhibition does not affect heterotopic ossification enhanced by FOP-related mutation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shore EM, Kaplan FS (2008) Insights from a rare genetic disorder of extra-skeletal bone formation, fibrodysplasia ossificans progressiva (FOP). Bone 43:427–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kaplan FS, Pignolo RJ, Shore EM (2013) From mysteries to medicines: drug development for fibrodysplasia ossificans progressive. Expert Opin Orphan Drugs 1:637–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kaplan FS, Chakkalakal SA, Shore EM (2012) Fibrodysplasia ossificans progressiva: mechanisms and models of skeletal metamorphosis. Dis Model Mech 5:756–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shafritz AB, Shore EM, Gannon FH, Zasloff MA, Taub R, Muenke M, Kaplan FS (1996) Overexpression of an osteogenic morphogen in fibrodysplasia ossificans progressiva. N Engl J Med 335:555–561

    Article  CAS  PubMed  Google Scholar 

  5. Fiori JL, Billings PC, de la Pena LS, Kaplan FS, Shore EM (2006) Dysregulation of the BMP-p38 MAPK signaling pathway in cells from patients with fibrodysplasia ossificans progressiva (FOP). J Bone Miner Res 21:902–909

    Article  CAS  PubMed  Google Scholar 

  6. Wosczyna MN, Biswas AA, Cogswell CA, Goldhamer DJ (2012) Multipotent progenitors resident in the skeletal muscle interstitium exhibit robust BMP-dependent osteogenic activity and mediate heterotopic ossification. J Bone Miner Res 27:1004–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Medici D, Shore EM, Lounev VY, Kaplan FS, Kalluri R, Olsen BR (2010) Conversion of vascular endothelial cells into multipotent stem-like cells. Nat Med 16:1400–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wada MR, Inagawa-Ogashiwa M, Shimizu S, Yasumoto S, Hashimoto N (2002) Generation of different fates from multipotent muscle stem cells. Development 129:2987–2995

    CAS  PubMed  Google Scholar 

  9. Asakura A, Komaki M, Rudnicki M (2001) Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation 68:245–253

    Article  CAS  PubMed  Google Scholar 

  10. Hisa I, Inoue Y, Hendy GN, Canaff L, Kitazawa R, Kitazawa S, Komori T, Sugimoto T, Seino S, Kaji H (2011) Parathyroid hormone-responsive Smad3-related factor, Tmem119, promotes osteoblast differentiation and interacts with the bone morphogenetic protein-Runx2 pathway. J Biol Chem 286:9787–9796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tanaka K, Inoue Y, Hendy GN, Canaff L, Katagiri T, Kitazawa R, Komori T, Sugimoto T, Seino S, Kaji H (2012) Interaction of Tmem119 and the bone morphogenetic protein pathway in the commitment of myoblastic into osteoblastic cells. Bone 51:158–167

    Article  CAS  PubMed  Google Scholar 

  12. Yano M, Kawao N, Tamura Y, Okada K, Kaji H (2014) A novel factor, Tmem176b, induced by activin-like kinase 2 signal promotes the differentiation of myoblasts into osteoblasts. Exp Clin Endocrinol Diabetes 122:7–14

    CAS  PubMed  Google Scholar 

  13. Mao L, Yano M, Kawao N, Tamura Y, Okada K, Kaji H (2013) Role of matrix metalloproteinase-10 in the BMP-2 inducing osteoblastic differentiation. Endocr J 60:1309–1319

    Article  CAS  PubMed  Google Scholar 

  14. Okamoto M, Murai J, Yoshikawa H, Tsumaki N (2006) Bone morphogenetic proteins in bone stimulate osteoclasts and osteoblasts during bone development. J Bone Miner Res 21:1022–1033

    Article  CAS  PubMed  Google Scholar 

  15. Abe E, Yamamoto M, Taguchi Y, Lecka-Czernik B, O’Brien CA, Economides AN, Stahl N, Jilka RL, Manolagas SC (2000) Essential requirement of BMPs-2/4 for both osteoblast and osteoclast formation in murine bone marrow cultures from adult mice: antagonism by noggin. J Bone Miner Res 15:663–673

    Article  CAS  PubMed  Google Scholar 

  16. Kanatani M, Sugimoto T, Kaji H, Kobayashi T, Nishiyama K, Fukase M, Kumegawa M, Chihara K (1995) Stimulatory effect of bone morphogenetic protein-2 on osteoclast-like cell formation and bone-resorbing activity. J Bone Miner Res 10:1681–1690

    Article  CAS  PubMed  Google Scholar 

  17. Kaneko H, Arakawa T, Mano H, Kaneda T, Ogasawara A, Nakagawa M, Toyama Y, Yabe Y, Kumegawa M, Hakeda Y (2000) Direct stimulation of osteoclastic bone resorption by bone morphogenetic protein (BMP)-2 and expression of BMP receptors in mature osteoclasts. Bone 27:479–486

    Article  CAS  PubMed  Google Scholar 

  18. Jensen ED, Pham L, Billington CJ Jr, Espe K, Carlson AE, Westendorf JJ, Petryk A, Gopalakrishnan R, Mansky K (2010) Bone morphogenic protein 2 directly enhances differentiation of murine osteoclast precursors. J Cell Biochem 109:672–682

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Yano M, Kawao N, Okumoto K, Tamura Y, Okada K, Kaji H (2014) Fibrodysplasia ossificans progressiva-related activated activin-like kinase signaling enhances osteoclast formation during heterotopic ossification in muscle tissues. J Biol Chem 289:16966–16977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Walker EC, McGregor NE, Poulton IJ, Pompolo S, Allan EH, Quinn JM, Gillespie MT, Martin TJ, Sims NA (2008) Cardiotrophin-1 is an osteoclast-derived stimulus of bone formation required for normal bone remodeling. J Bone Miner Res 23:2025–2032

    Article  CAS  PubMed  Google Scholar 

  21. Henriksen K, Karsdal MA, Martin TJ (2014) Osteoclast-derived coupling factors in bone remodeling. Calcif Tissue Int 94:88–97

    Article  CAS  PubMed  Google Scholar 

  22. Pederson L, Ruan M, Westendorf JJ, Khosla S, Oursler MJ (2008) Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate. Proc Natl Acad Sci USA 105:20764–20769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Takeshita S, Fumoto T, Matsuoka K, Park KA, Aburatani H, Kato S, Ito M, Ikeda K (2013) Osteoclast-secreted CTHRC1 in the coupling of bone resorption to formation. J Clin Invest 123:3914–3924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lotinun S, Kiviranta R, Matsubara T, Alzate JA, Neff L, Luth A, Koskivirta I, Kleuser B, Vacher J, Vuorio E, Horne WC, Baron R (2013) Osteoclast-specific cathepsin K deletion stimulates S1P-dependent bone formation. J Clin Invest 123:666–681

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Brantus JF, Meunier PJ (1998) Effects of intravenous etidronate and oral corticosteroids in fibrodysplasia ossificans progressiva. Clin Orthop Relat Res 346:117–120

    Article  PubMed  Google Scholar 

  26. Ulusoy H (2012) Fibrodysplasia ossificans progressiva without characteristic skeletal anomalies. Rheumatol Int 32:1379–1382

    Article  PubMed  Google Scholar 

  27. Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Muller R (2010) Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res 25:1468–1486

    Article  PubMed  Google Scholar 

  28. Kawao N, Tamura Y, Okumoto K, Yano M, Okada K, Matsuo O, Kaji H (2013) Plasminogen plays a crucial role in bone repair. J Bone Miner Res 28:1561–1574

    Article  CAS  PubMed  Google Scholar 

  29. Kawao N, Tamura Y, Okumoto K, Yano M, Okada K, Matsuo O, Kaji H (2014) Tissue-type plasminogen activator deficiency delays bone repair: roles of osteoblastic proliferation and vascular endothelial growth factor. Am J Physiol Endocrinol Metab 307:E278–E288

    Article  CAS  PubMed  Google Scholar 

  30. Reszka AA, Halasy-Nagy JM, Masarachia PJ, Rodan GA (1999) Bisphosphonates act directly on the osteoclast to induce caspase cleavage of mst1 kinase during apoptosis. A link between inhibition of the mevalonate pathway and regulation of an apoptosis-promoting kinase. J Biol Chem 274:34967–34973

    Article  CAS  PubMed  Google Scholar 

  31. Russell RG (2011) Bisphosphonates: the first 40 years. Bone 49:2–19

    Article  CAS  PubMed  Google Scholar 

  32. Koseki T, Gao Y, Okahashi N, Murase Y, Tsujisawa T, Sato T, Yamato K, Nishihara T (2002) Role of TGF-beta family in osteoclastogenesis induced by RANKL. Cell Signal 14:31–36

    Article  CAS  PubMed  Google Scholar 

  33. Yasui T, Kadono Y, Nakamura M, Oshima Y, Matsumoto T, Masuda H, Hirose J, Omata Y, Yasuda H, Imamura T, Nakamura K, Tanaka S (2011) Regulation of RANKL-induced osteoclastogenesis by TGF-beta through molecular interaction between Smad3 and Traf6. J Bone Miner Res 26:1447–1456

    Article  CAS  PubMed  Google Scholar 

  34. Janssens K, ten Dijke P, Janssens S, Van Hul W (2005) Transforming growth factor-beta1 to the bone. Endocr Rev 26:743–774

    Article  CAS  PubMed  Google Scholar 

  35. Matsumoto M, Sudo T, Saito T, Osada H, Tsujimoto M (2000) Involvement of p38 mitogen-activated protein kinase signaling pathway in osteoclastogenesis mediated by receptor activator of NF-kappa B ligand (RANKL). J Biol Chem 275:31155–31161

    Article  CAS  PubMed  Google Scholar 

  36. Li X, Udagawa N, Takami M, Sato N, Kobayashi Y, Takahashi N (2003) p38 Mitogen-activated protein kinase is crucially involved in osteoclast differentiation but not in cytokine production, phagocytosis, or dendritic cell differentiation of bone marrow macrophages. Endocrinology 144:4999–5005

    Article  CAS  PubMed  Google Scholar 

  37. Wang Y, Zhou X, Oberoi K, Phelps R, Couwenhoven R, Sun M, Rezza A, Holmes G, Percival CJ, Friedenthal J, Krejci P, Richtsmeier JT, Huso DL, Rendl M, Jabs EW (2012) p38 Inhibition ameliorates skin and skull abnormalities in Fgfr2 Beare-Stevenson mice. J Clin Invest 122:2153–2164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wu CF, Chiang WC, Lai CF, Chang FC, Chen YT, Chou YH, Wu TH, Linn GR, Ling H, Wu KD, Tsai TJ, Chen YM, Duffield JS, Lin SL (2013) Transforming growth factor beta-1 stimulates profibrotic epithelial signaling to activate pericyte-myofibroblast transition in obstructive kidney fibrosis. Am J Pathol 182:118–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sakai A, Mori T, Sakuma-Zenke M, Takeda T, Nakai K, Katae Y, Hirasawa H, Nakamura T (2005) Osteoclast development in immobilized bone is suppressed by parathyroidectomy in mice. J Bone Miner Metab 23:8–14

    Article  CAS  PubMed  Google Scholar 

  40. Hisa I, Kawara A, Katagiri T, Sugimoto T, Kaji H (2012) Effects of serum from a fibrodysplasia ossificans progressiva patient on osteoblastic cells. Open J Endocr Metab Dis 2:1–6

    Article  Google Scholar 

  41. Schipani E, Maes C, Carmeliet G, Semenza GL (2009) Regulation of osteogenesis–angiogenesis coupling by HIFs and VEGF. J Bone Miner Res 24:1347–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gatti D, Viapiana O, Rossini M, Silvano A (2010) Rosiglitazone therapy is associated with major clinical improvements in a patient with fibrodysplasia ossificans progressiva. J Bone Miner Res 25:1460–1462

    PubMed  Google Scholar 

  43. Shimono K, Tung WE, Macolino C, Chi AH, Didizian JH, Mundy C, Chandraratna RA, Mishina Y, Enomoto-Iwamoto M, Pacifici M, Iwamoto M (2011) Potent inhibition of heterotopic ossification by nuclear retinoic acid receptor-gamma agonists. Nat Med 17:454–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yu PB, Deng DY, Lai CS, Hong CC, Cuny GD, Bouxsein ML, Hong DW, McManus PM, Katagiri T, Sachidanandan C, Kamiya N, Fukuda T, Mishina Y, Peterson RT, Bloch KD (2008) BMP type I receptor inhibition reduces heterotopic ossification. Nat Med 14:1363–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yamamoto R, Matsushita M, Kitoh H, Masuda A, Ito M, Katagiri T, Kawai T, Ishiguro N, Ohno K (2013) Clinically applicable antianginal agents suppress osteoblastic transformation of myogenic cells and heterotopic ossifications in mice. J Bone Miner Metab 31:26–33

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Takenobu Katagiri (Saitama Medical University) for ALK2 (R206H) plasmids. This study was partly supported by a grant from the Osaka Medical Research Foundation for Intractable Diseases, a Kinki University Research and Grant-in-Aid for Scientific Research (C: 25460305) to NK and (C: 24590289) to HK from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Conflict of interest

All authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Kaji.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawao, N., Yano, M., Tamura, Y. et al. Role of osteoclasts in heterotopic ossification enhanced by fibrodysplasia ossificans progressiva-related activin-like kinase 2 mutation in mice . J Bone Miner Metab 34, 517–525 (2016). https://doi.org/10.1007/s00774-015-0701-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-015-0701-3

Keywords

Navigation