Skip to main content

Advertisement

Log in

Strain differences in the attenuation of bone accrual in a young growing mouse model of insulin resistance

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Skeletal fractures are considered a chronic complication of type 2 diabetes mellitus (T2DM), but the etiology of compromised bone quality that develops over time remains uncertain. This study investigated the concurrent alterations in metabolic and skeletal changes in two mouse strains, a responsive (C57BL/6) and a relatively resistant (C3H/HeJ) strain, to high-fat diet-induced glucose intolerance. Four-week-old male C57BL/6 and C3H/HeJ mice were randomized to a control (Con = 10 % kcal fat) or high-fat (HF = 60 % kcal fat) diet for 2, 8, or 16 weeks. Metabolic changes, including blood glucose, plasma insulin and leptin, and glucose tolerance were monitored over time in conjunction with alterations in bone structure and turn over. Elevated fasting glucose occurred in both the C57BL/6 and C3H/HeJ strains on the HF diet at 2 and 8 weeks, but only in the C57BL/6 strain at 16 weeks. Both strains on the HF diet demonstrated impaired glucose tolerance at each time point. The C57BL/6 mice on the HF diet exhibited lower whole-body bone mineral density (BMD) by 8 and 16 weeks, but the C3H/HeJ strain had no evidence of bone loss until 16 weeks. Analyses of bone microarchitecture revealed that trabecular bone accrual in the distal femur metaphysis was attenuated in the C57BL/6 mice on the HF diet at 8 and 16 weeks. In contrast, the C3H/HeJ mice were protected from the deleterious effects of the HF diet on trabecular bone. Alterations in gene expression from the femur revealed that several toll-like receptor (TLR)-4 targets (Atf4, Socs3, and Tlr4) were regulated by the HF diet in the C57BL/6 strain, but not in the C3H/HeJ strain. Structural changes observed only in the C57BL/6 mice were accompanied with a decrease in osteoblastogenesis after 8 and 16 weeks on the HF diet, suggesting a TLR-4-mediated mechanism in the suppression of bone formation. Both the C57BL/6 and C3H/HeJ mice demonstrated an increase in osteoclastogenesis after 8 weeks on the HF diet; however, bone turnover was decreased in the C57BL/6 with prolonged hyperglycemia. Further investigation is needed to understand how hyperglycemia and hyperinsulinemia suppress bone turnover in the context of T2DM and the role of TLR-4 in this response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. de Onis M, Blossner M, Borghi E (2010) Global prevalence and trends of overweight and obesity among preschool children. Am J Clin Nutr 92:1257–1264

    Article  PubMed  Google Scholar 

  2. Centers for Disease Control and Prevention. Children and Diabetes. 2013 Ref Type: Report

  3. Schwartz AV, Vittinghoff E, Bauer DC, Hillier TA, Strotmeyer ES, Ensrud KE, Donaldson MG, Cauley JA, Harris TB, Koster A, Womack CR, Palermo L, Black DM (2011) Association of BMD and FRAX score with risk of fracture in older adults with type 2 diabetes. JAMA 305:2184–2192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Farr JN, Drake MT, Amin S, Melton LJ, III, McCready LK, Khosla S (2013) In Vivo assessment of bone quality in postmenopausal women with type 2 diabetes. J Bone Miner Res

  5. Gorman E, Chudyk AM, Madden KM, Ashe MC (2011) Bone health and type 2 diabetes mellitus: a systematic review. Physiother Can 63:8–20

    Article  PubMed  PubMed Central  Google Scholar 

  6. Foley S, Quinn S, Jones G (2009) Tracking of bone mass from childhood to adolescence and factors that predict deviation from tracking. Bone 44:752–757

    Article  PubMed  Google Scholar 

  7. Goulding A, Jones IE, Williams SM, Grant AM, Taylor RW, Manning PJ, Langley J (2005) First fracture is associated with increased risk of new fractures during growth. J Pediatr 146:286–288

    Article  PubMed  Google Scholar 

  8. Goulding A, Jones IE, Taylor RW, Williams SM, Manning PJ (2001) Bone mineral density and body composition in boys with distal forearm fractures: a dual-energy X-ray absorptiometry study. J Pediatr 139:509–515

    Article  CAS  PubMed  Google Scholar 

  9. Goulding A, Jones IE, Taylor RW, Manning PJ, Williams SM (2000) More broken bones: a 4 year double cohort study of young girls with and without distal forearm fractures. J Bone Miner Res 15:2011–2018

    Article  CAS  PubMed  Google Scholar 

  10. Goulding A, Taylor RW, Jones IE, McAuley KA, Manning PJ, Williams SM (2000) Overweight and obese children have low bone mass and area for their weight. Int J Obes Relat Metab Disord 24:627–632

    Article  CAS  PubMed  Google Scholar 

  11. Klein KO, Larmore KA, de Lansey E, Brown JM, Considine RV, Hassink SG (1998) Effect of obesity on estradiol level, and its relationship to leptin, bone maturation, and bone mineral density in children. J Clin Endocrinol Metab 83:3469–3475

    Article  CAS  PubMed  Google Scholar 

  12. Leonard MB, Shults J, Wilson BA, Tershakovec AM, Zemel BS (2004) Obesity during childhood and adolescence augments bone mass and bone dimensions. Am J Clin Nutr 80:514–523

    CAS  PubMed  Google Scholar 

  13. Matkovic V, Jelic T, Wardlaw GM, Ilich JZ, Goel PK, Wright JK, Andon MB, Smith KT, Heaney RP (1994) Timing of peak bone mass in Caucasian females and its implication for the prevention of osteoporosis. Inference from a cross-sectional model. J Clin Invest 93:799–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fajardo RJ, Karim L, Calley VI, Bouxsein ML (2014) A review of rodent models of type 2 diabetic skeletal fragility. J Bone Miner Res 29:1025–1040

    Article  PubMed  Google Scholar 

  15. Patsch JM, Kiefer FW, Varga P, Pail P, Rauner M, Stupphann D, Resch H, Moser D, Zysset PK, Stulnig TM, Pietschmann P (2011) Increased bone resorption and impaired bone microarchitecture in short-term and extended high-fat diet-induced obesity. Metabolism 60:243–249

    Article  CAS  PubMed  Google Scholar 

  16. Ionova-Martin SS, Wade JM, Tang S, Shahnazari M, Ager JW III, Lane NE, Yao W, Alliston T, Vaisse C, Ritchie RO (2011) Changes in cortical bone response to high-fat diet from adolescence to adulthood in mice. Osteoporos Int 22:2283–2293

    Article  CAS  PubMed  Google Scholar 

  17. Lu XM, Zhao H, Wang EH (2013) A high-fat diet induces obesity and impairs bone acquisition in young male mice. Mol Med Rep 7:1203–1208

    CAS  PubMed  Google Scholar 

  18. Thomas DM, Hards DK, Rogers SD, Ng KW, Best JD (1996) Insulin receptor expression in bone. J Bone Miner Res 11:1312–1320

    Article  CAS  PubMed  Google Scholar 

  19. Clemens TL, Karsenty G (2011) The osteoblast: an insulin target cell controlling glucose homeostasis. J Bone Miner Res 26:677–680

    Article  CAS  PubMed  Google Scholar 

  20. Ferron M, Wei J, Yoshizawa T, Del FA, DePinho RA, Teti A, Ducy P, Karsenty G (2010) Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 142:296–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Confavreux CB, Levine RL, Karsenty G (2009) A paradigm of integrative physiology, the crosstalk between bone and energy metabolisms. Mol Cell Endocrinol 310:21–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Collins S, Martin TL, Surwit RS, Robidoux J (2004) Genetic vulnerability to diet-induced obesity in the C57BL/6 J mouse: physiological and molecular characteristics. Physiol Behav 81:243–248

    Article  CAS  PubMed  Google Scholar 

  23. Poggi M, Bastelica D, Gual P, Iglesias MA, Gremeaux T, Knauf C, Peiretti F, Verdier M, Juhan-Vague I, Tanti JF, Burcelin R, Alessi MC (2007) C3H/HeJ mice carrying a toll-like receptor 4 mutation are protected against the development of insulin resistance in white adipose tissue in response to a high-fat diet. Diabetologia 50:1267–1276

    Article  CAS  PubMed  Google Scholar 

  24. Tsukumo DM, Carvalho-Filho MA, Carvalheira JB, Prada PO, Hirabara SM, Schenka AA, Araujo EP, Vassallo J, Curi R, Velloso LA, Saad MJ (2007) Loss-of-function mutation in toll-like receptor 4 prevents diet-induced obesity and insulin resistance. Diabetes 56:1986–1998

    Article  CAS  PubMed  Google Scholar 

  25. Dasu MR, Ramirez S, Isseroff RR (2012) toll-like receptors and diabetes: a therapeutic perspective. Clin Sci (Lond) 122:203–214

    Article  CAS  Google Scholar 

  26. Pal D, Dasgupta S, Kundu R, Maitra S, Das G, Mukhopadhyay S, Ray S, Majumdar SS, Bhattacharya S (2012) Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance. Nat Med 18

  27. Lee JY, Sohn KH, Rhee SH, Hwang D (2001) Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through toll-like receptor 4. J Biol Chem 276:16683–16689

    Article  CAS  PubMed  Google Scholar 

  28. Schaeffler A, Gross P, Buettner R, Bollheimer C, Buechler C, Neumeier M, Kopp A, Schoelmerich J, Falk W (2009) Fatty acid-induced induction of Toll-like receptor-4/nuclear factor-kappaB pathway in adipocytes links nutritional signalling with innate immunity. Immunology 126:233–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Reyna SM, Ghosh S, Tantiwong P, Meka CS, Eagan P, Jenkinson CP, Cersosimo E, DeFronzo RA, Coletta DK, Sriwijitkamol A, Musi N (2008) Elevated toll-like receptor 4 expression and signaling in muscle from insulin-resistant subjects. Diabetes 57:2595–2602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Medvedev AE, Piao W, Shoenfelt J, Rhee SH, Chen H, Basu S, Wahl LM, Fenton MJ, Vogel SN (2007) Role of TLR4 tyrosine phosphorylation in signal transduction and endotoxin tolerance. J Biol Chem 282:16042–16053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rendina-Ruedy E, Hembree KD, Sasaki A, Davis MR, Lightfoot SA, Clarke SL, Lucas EA, Smith BJ (2015) A comparative study of the metabolic and skeletal response of C57BL/6J and C57BL/6N mice in a diet-induced model of type 2 diabetes. J Nutr Metab (in press)

  32. Piao W, Song C, Chen H, Wahl LM, Fitzgerald KA, O’Neill LA, Medvedev AE (2008) Tyrosine phosphorylation of MyD88 adapter-like (Mal) is critical for signal transduction and blocked in endotoxin tolerance. J Biol Chem 283:3109–3119

    Article  CAS  PubMed  Google Scholar 

  33. Diez-Perez A, Guerri R, Nogues X, Caceres E, Pena MJ, Mellibovsky L, Randall C, Bridges D, Weaver JC, Proctor A, Brimer D, Koester KJ, Ritchie RO, Hansma PK (2010) Microindentation for in vivo measurement of bone tissue mechanical properties in humans. J Bone Miner Res 25:1877–1885

    Article  PubMed  PubMed Central  Google Scholar 

  34. Aref M, Gallant MA, Organ JM, Wallace JM, Newman CL, Burr DB, Brown DM, Allen MR (2013) In vivo reference point indentation reveals positive effects of raloxifene on mechanical properties following 6 months of treatment in skeletally mature beagle dogs. Bone 56:449–453

    Article  CAS  PubMed  Google Scholar 

  35. Lee KN, Jang WG, Kim EJ, Oh SH, Son HJ, Kim SH, Franceschi R, Zhang XK, Lee SE, Koh JT (2012) Orphan nuclear receptor chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) protein negatively regulates bone morphogenetic protein 2-induced osteoblast differentiation through suppressing runt-related gene 2 (Runx2) activity. J Biol Chem 287:18888–18899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rendina E, Lim YF, Marlow D, Wang Y, Clarke SL, Kuvibidila S, Lucas EA, Smith BJ (2012) Dietary supplementation with dried plum prevents ovariectomy-induced bone loss while modulating the immune response in C57BL/6 J mice. J Nutr Biochem 23:60–68

    Article  CAS  PubMed  Google Scholar 

  37. Rendina E, Hembree KD, Davis MR, Marlow D, Clarke SL, Halloran BP, Lucas EA, Smith BJ (2013) Dried plum’s unique capacity to reverse bone loss and alter bone metabolism in postmenopausal osteoporosis model. PLoS One 8:e60569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Steneberg P, Rubins N, Bartoov-Shifman R, Walker MD, Edlund H (2005) The FFA receptor GPR40 links hyperinsulinemia, hepatic steatosis, and impaired glucose homeostasis in mouse. Cell Metab 1:245–258

    Article  CAS  PubMed  Google Scholar 

  39. Curry DL, Bennett LL, Grodsky GM (1968) Dynamics of insulin secretion by the perfused rat pancreas. Endocrinology 83:572–584

    Article  CAS  PubMed  Google Scholar 

  40. Grodsky GM, Curry DL, Bennett LL, Rodrigo JJ (1968) Factors influencing different rates of insulin release in vitro. Acta Diabetol Lat 5(Suppl 1):140–161

    PubMed  Google Scholar 

  41. Grodsky GM, Curry D, Landahl H, Bennett L (1969) Further studies on the dynamic aspects of insulin release in vitro with evidence for a two-compartmental storage system. Acta Diabetol Lat 6(Suppl 1):554–578

    PubMed  Google Scholar 

  42. Ward WK, Bolgiano DC, McKnight B, Halter JB, Porte D Jr (1984) Diminished B cell secretory capacity in patients with noninsulin-dependent diabetes mellitus. J Clin Invest 74:1318–1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. van Haeften TW, Van Maarschalkerweerd WW, Gerich JE, Van der Veen EA (1991) Decreased insulin secretory capacity and normal pancreatic B-cell glucose sensitivity in non-obese patients with NIDDM. Eur J Clin Invest 21:168–174

    Article  PubMed  Google Scholar 

  44. Parhami F, Tintut Y, Beamer WG, Gharavi N, Goodman W, Demer LL (2001) Atherogenic high-fat diet reduces bone mineralization in mice. J Bone Miner Res 16:182–188

    Article  CAS  PubMed  Google Scholar 

  45. Droke EA, Hager KA, Lerner MR, Lightfoot SA, Stoecker BJ, Brackett DJ, Smith BJ (2007) Soy isoflavones avert chronic inflammation-induced bone loss and vascular disease. J Inflamm (Lond) 4:17

    Article  Google Scholar 

  46. Guo C, Yuan L, Wang JG, Wang F, Yang XK, Zhang FH, Song JL, Ma XY, Cheng Q, Song GH (2014) Lipopolysaccharide (LPS) Induces the Apoptosis and Inhibits Osteoblast Differentiation Through JNK Pathway in MC3T3-E1 Cells. Inflammation 37:621–631

    Article  CAS  PubMed  Google Scholar 

  47. Roggia C, Gao Y, Cenci S, Weitzmann MN, Toraldo G, Isaia G, Pacifici R (2001) Up-regulation of TNF-producing T cells in the bone marrow: a key mechanism by which estrogen deficiency induces bone loss in vivo. Proc Natl Acad Sci USA 98:13960–13965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Smith BJ, Lerner MR, Bu SY, Lucas EA, Hanas JS, Lightfoot SA, Postier RG, Bronze MS, Brackett DJ (2006) Systemic bone loss and induction of coronary vessel disease in a rat model of chronic inflammation. Bone 38:378–386

    Article  CAS  PubMed  Google Scholar 

  49. Shen CL, Yeh JK, Samathanam C, Cao JJ, Stoecker BJ, Dagda RY, Chyu MC, Wang JS (2010) Protective actions of green tea polyphenols and alfacalcidol on bone microstructure in female rats with chronic inflammation. J Nutr Biochem

  50. Tomomatsu N, Aoki K, Alles N, Soysa NS, Hussain A, Nakachi H, Kita S, Shimokawa H, Ohya K, Amagasa T (2009) LPS-induced inhibition of osteogenesis is TNF-alpha dependent in a murine tooth extraction model. J Bone Miner Res 24:1770–1781

    Article  CAS  PubMed  Google Scholar 

  51. Zou W, Bar-Shavit Z (2002) Dual modulation of osteoclast differentiation by lipopolysaccharide. J Bone Miner Res 17:1211–1218

    Article  CAS  PubMed  Google Scholar 

  52. Mabilleau G, Chappard D, Sabokbar A (2011) Role of the A20-TRAF6 axis in lipopolysaccharide-mediated osteoclastogenesis. J Biol Chem 286:3242–3249

    Article  CAS  PubMed  Google Scholar 

  53. Bandow K, Maeda A, Kakimoto K, Kusuyama J, Shamoto M, Ohnishi T, Matsuguchi T (2010) Molecular mechanisms of the inhibitory effect of lipopolysaccharide (LPS) on osteoblast differentiation. Biochem Biophys Res Commun 402:755–761

    Article  CAS  PubMed  Google Scholar 

  54. Sheng MH, Baylink DJ, Beamer WG, Donahue LR, Lau KH, Wergedal JE (2002) Regulation of bone volume is different in the metaphyses of the femur and vertebra of C3H/HeJ and C57BL/6 J mice. Bone 30:486–491

    Article  PubMed  Google Scholar 

  55. Sheng MH, Lau KH, Mohan S, Baylink DJ, Wergedal JE (2006) High osteoblastic activity in C3H/HeJ mice compared to C57BL/6 J mice is associated with low apoptosis in C3H/HeJ osteoblasts. Calcif Tissue Int 78:293–301

    Article  CAS  PubMed  Google Scholar 

  56. Sheng MH, Baylink DJ, Beamer WG, Donahue LR, Rosen CJ, Lau KH, Wergedal JE (1999) Histomorphometric studies show that bone formation and bone mineral apposition rates are greater in C3H/HeJ (high-density) than C57BL/6 J (low-density) mice during growth. Bone 25:421–429

    Article  CAS  PubMed  Google Scholar 

  57. Sheng MH, Lau KH, Beamer WG, Baylink DJ, Wergedal JE (2004) In vivo and in vitro evidence that the high osteoblastic activity in C3H/HeJ mice compared to C57BL/6 J mice is intrinsic to bone cells. Bone 35:711–719

    Article  CAS  PubMed  Google Scholar 

  58. Garcia-Hernandez A, Arzate H, Gil-Chavarria I, Rojo R, Moreno-Fierros L (2012) High glucose concentrations alter the biomineralization process in human osteoblastic cells. Bone 50:276–288

    Article  CAS  PubMed  Google Scholar 

  59. Iida K, Rosen CJ, Ackert-Bicknell C, Thorner MO (2005) Genetic differences in the IGF-I gene among inbred strains of mice with different serum IGF-I levels. J Endocrinol 186:481–489

    Article  CAS  PubMed  Google Scholar 

  60. Kapur S, Amoui M, Kesavan C, Wang X, Mohan S, Baylink DJ, Lau KH (2010) Leptin receptor (Lepr) is a negative modulator of bone mechanosensitivity and genetic variations in Lepr may contribute to the differential osteogenic response to mechanical stimulation in the C57BL/6 J and C3H/HeJ pair of mouse strains. J Biol Chem 285:37607–37618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bandow K, Maeda A, Kakimoto K, Kusuyama J, Shamoto M, Ohnishi T, Matsuguchi T (2010) Molecular mechanisms of the inhibitory effect of lipopolysaccharide (LPS) on osteoblast differentiation. Biochem Biophys Res Commun 402:755–761

    Article  CAS  PubMed  Google Scholar 

  62. Gao A, Kantarci A, Herrera BS, Gao H, Van Dyke TE (2013) A critical role for suppressors of cytokine signaling 3 in regulating LPS-induced transcriptional activation of matrix metalloproteinase-13 in osteoblasts. PeerJ 1:e51

    Article  PubMed Central  Google Scholar 

  63. Yan C, Cao J, Wu M, Zhang W, Jiang T, Yoshimura A, Gao H (2010) Suppressor of cytokine signaling 3 inhibits LPS-induced IL-6 expression in osteoblasts by suppressing CCAAT/enhancer-binding protein beta activity. J Biol Chem 285:37227–37239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Matsushita K, Itoh S, Ikeda S, Yamamoto Y, Yamauchi Y, Hayashi M (2014) LIF/STAT3/SOCS3 Signaling Pathway in Murine Bone Marrow Stromal Cells Suppresses Osteoblast Differentiation. J Cell Biochem

  65. Kim JJ, Sears DD (2010) TLR4 and Insulin Resistance. Gastroenterol Res Pract

  66. Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ, McKee MD, Jung DY, Zhang Z, Kim JK, Mauvais-Jarvis F, Ducy P, Karsenty G (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130:456–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rached MT, Kode A, Silva BC, Jung DY, Gray S, Ong H, Paik JH, DePinho RA, Kim JK, Karsenty G, Kousteni S (2010) FoxO1 expression in osteoblasts regulates glucose homeostasis through regulation of osteocalcin in mice. J Clin Invest 120:357–368

    Article  CAS  PubMed  Google Scholar 

  68. Ferron M, McKee MD, Levine RL, Ducy P, Karsenty G (2012) Intermittent injections of osteocalcin improve glucose metabolism and prevent type 2 diabetes in mice. Bone 50:568–575

    Article  CAS  PubMed  Google Scholar 

  69. Kode A, Mosialou I, Silva BC, Joshi S, Ferron M, Rached MT, Kousteni S (2012) FoxO1 protein cooperates with ATF4 protein in osteoblasts to control glucose homeostasis. J Biol Chem 287:8757–8768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cho JH, Lee SK, Lee JW, Kim EC (2010) The role of heme oxygenase-1 in mechanical stress–and lipopolysaccharide-induced osteogenic differentiation in human periodontal ligament cells. Angle Orthod 80:552–559

    PubMed  Google Scholar 

  71. Kanazawa I, Yamaguchi T, Yano S, Yamauchi M, Sugimoto T (2009) Activation of AMP kinase and inhibition of Rho kinase induce the mineralization of osteoblastic MC3T3-E1 cells through endothelial NOS and BMP-2 expression. Am J Physiol Endocrinol Metab 296:E139–E146

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was sponsored by Oklahoma Center for the Advancement of Science and Technology (HR10-068) and United States Department of Agriculture (2012-67011-19906). We would also like to express our gratitude to Sandra Peterson (Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078) for her technical assistance.

Conflict of interest

J.M.G. is the co-founder, co-owner, and Chief Scientific Officer of LaCell LLC, a for-profit biotechnology company focusing on the use of stromal/stem cells for basic discovery and clinical translational research. All other authors have no conflicts to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brenda J. Smith.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rendina-Ruedy, E., Graef, J.L., Davis, M.R. et al. Strain differences in the attenuation of bone accrual in a young growing mouse model of insulin resistance. J Bone Miner Metab 34, 380–394 (2016). https://doi.org/10.1007/s00774-015-0685-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-015-0685-z

Keywords

Navigation