Skip to main content

Advertisement

Log in

Bone matrix calcification during embryonic and postembryonic rat calvarial development assessed by SEM–EDX spectroscopy, XRD, and FTIR spectroscopy

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Bone mineral is constituted of biological hydroxyapatite crystals. In developing bone, the mineral crystal matures and the Ca/P ratio increases. However, how an increase in the Ca/P ratio is involved in maturation of the crystal is not known. The relationships among organic components and mineral changes are also unclear. The study was designed to investigate the process of calcification during rat calvarial bone development. Calcification was evaluated by analyzing the atomic distribution and concentration of Ca, P, and C with scanning electron microscopy (SEM)–energy-dispersive X-ray (EDX) spectroscopy and changes in the crystal structure with X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Histological analysis showed that rat calvarial bone formation started around embryonic day 16. The areas of Ca and P expanded, matching the region of the developing bone matrix, whereas the area of C became localized around bone. X-ray diffraction and FTIR analysis showed that the amorphous-like structure of the minerals at embryonic day 16 gradually transformed into poorly crystalline hydroxyapatite, whereas the proportion of mineral to protein increased until postnatal week 6. FTIR analysis also showed that crystallization of hydroxyapatite started around embryonic day 20, by which time SEM–EDX spectroscopy showed that the Ca/P ratio had increased and the C/Ca and C/P ratios had decreased significantly. The study suggests that the Ca/P molar ratio increases and the proportion of organic components such as proteins of the bone matrix decreases during the early stage of calcification, whereas crystal maturation continues throughout embryonic and postembryonic bone development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sasano Y, Li HC, Zhu JX, Imanaka-yoshida K, Mizoguchi I, Kagayama M (2000) Immunohistochemical localization of type I collagen, fibronectin and tenascin C during embryonic osteogenesis in the dentary of mandibles and tibias in rats. Histochem J 32:591–598

    Article  PubMed  CAS  Google Scholar 

  2. Sasano Y, Zhu JX, Kamakura S, Kusunoki S, Mizoguchi I, Kagayama M (2000) Expression of major bone extracellular matrix proteins during embryonic osteogenesis in rat mandibles. Anat Embryol 202:31–37

    Article  PubMed  CAS  Google Scholar 

  3. Zhu JX, Sasano Y, Takahashi I, Mizoguchi I, Kagayama M (2001) Temporal and spatial gene expression of major bone extracellular matrix molecules during embryonic mandibular osteogenesis in rats. Histochem J 33:25–35

    Article  PubMed  CAS  Google Scholar 

  4. Gorski JP, Wang A, Lovitch D, Law D, Powell K, Midura RJ (2004) Extracellular bone acidic glycoprotein-75 defines condensed mesenchyme regions to be mineralized and localizes with bone sialoprotein during intramembranous bone formation. J Biol Chem 279:25455–25463

    Article  PubMed  CAS  Google Scholar 

  5. Midura RJ, Wang A, Lovitch D, Law D, Powell K, Gorski JP (2004) Bone acidic glycoprotein-75 delineates the extracellular sites of future bone sialoprotein accumulation and apatite nucleation in osteoblastic cultures. J Biol Chem 279:25464–25473

    Article  PubMed  CAS  Google Scholar 

  6. Midura RJ, Vasanji A, Su X, Wang A, Midura SB, Gorski JP (2007) Calcospherulites isolated from the mineralization front of bone induce the mineralization of type I collagen. Bone 41:1005–1016

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Glimcher MJ (1984) Recent studies of the mineral phase in bone and its possible linkage to the organic matrix by protein-bound phosphate bonds. Philos Trans R Soc Lond B Biol Sci 304:479–508

    Article  PubMed  CAS  Google Scholar 

  8. Boonrungsiman S, Gentleman E, Carzaniga R, Evans ND, McComb DW, Porter AE, Stevens MM (2012) The role of intracellular calcium phosphate in osteoblast-mediated bone apatite formation. Proc Natl Acad Sci U S A 109:14170–14175

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Anderson HC (1967) Electron microscopic studies of induced cartilage development and calcification. J Cell Biol 35:81–101

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Bonucci E (1967) Fine structure of early cartilage calcification. J Ultrastruct Res 20:33–50

    Article  PubMed  CAS  Google Scholar 

  11. Hoshi K, Kemmotsu S, Takeuchi Y, Amizuka N, Ozawa H (1999) The primary calcification in bones follows removal of decorin and fusion of collagen fibrils. J Bone Miner Res 14:273–280

    Article  PubMed  CAS  Google Scholar 

  12. Hoshi K, Ejiri S, Ozawa H (2001) Localizational alterations of calcium, phosphorus, and calcification-related organics such as proteoglycans and alkaline phosphatase during bone calcification. J Bone Miner Res 16:289–298

    Article  PubMed  CAS  Google Scholar 

  13. Mahamid J, Sharir A, Addadi L, Weiner S (2008) Amorphous calcium phosphate is a major component of the forming fin bones of zebrafish: indications for an amorphous precursor phase. Proc Natl Acad Sci U S A 105:12748–12753

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Mahamid J, Sharir A, Gur D, Zelzer E, Addadi L, Weiner S (2011) Bone mineralization proceeds through intracellular calcium phosphate loaded vesicles: a cryo-electron microscopy study. J Struct Biol 174:527–535

    Article  PubMed  CAS  Google Scholar 

  15. Pleshko N, Boskey A, Mendelsohn R (1991) Novel infrared spectroscopic method for the determination of crystallinity of hydroxyapatite minerals. Biophys J 60:786–793

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Posner AS, Harper RA, Muller SA, Menczel J (1965) Age changes in the crystal chemistry of bone apatite. Ann N Y Acad Sci 131:737–742

    Article  PubMed  CAS  Google Scholar 

  17. Bodier-Houllé P, Steuer P, Voegel JC, Cuisinier FJ (1998) First experimental evidence for human dentine crystal formation involving conversion of octacalcium phosphate to hydroxyapatite. Acta Crystallogr D Biol Crystallogr 54:1377–1381

    Article  PubMed  Google Scholar 

  18. Suzuki O, Kamakura S, Katagiri T, Nakamura M, Zhao B, Honda Y, Kamijo R (2006) Bone formation enhanced by implanted octacalcium phosphate involving conversion into Ca-deficient hydroxyapatite. Biomaterials 27:2671–2681

    Article  PubMed  CAS  Google Scholar 

  19. Grynpas MD, Hunter GK (1988) Bone mineral and glycosaminoglycans in newborn and mature rabbits. J Bone Miner Res 3:159–164

    Article  PubMed  CAS  Google Scholar 

  20. Dean DD, Schwartz Z, Muniz OE, Gomez R, Swain LD, Howell DS, Boyan BD (1992) Matrix vesicles are enriched in metalloproteinases that degrade proteoglycans. Calcif Tissue Int 50:342–349

    Article  PubMed  CAS  Google Scholar 

  21. Sodek KL, Tupy JH, Sodek J, Grynpas MD (2000) Relationships between bone protein and mineral in developing porcine long bone and calvaria. Bone 26:189–198

    Article  PubMed  CAS  Google Scholar 

  22. Sasano Y, Nakamura M, Okata H, Henmi A, Mikami Y (2012) Remodeling of extracellular matrices initiates and advances calcification during development and healing of bones and teeth. J Oral Biosci 54:25–29

    Article  Google Scholar 

  23. Lev R, Spicer SS (1964) Specific staining of sulphate groups with alcian blue at low pH. J Histochem Cytochem 12:309

    Article  PubMed  CAS  Google Scholar 

  24. Okata H, Nakamura M, Henmi A, Yamaguchi S, Mikami Y, Shimauchi H, Sasano Y (2014) Calcification during bone healing in a standardised rat calvarial defect assessed by micro-CT and SEM–EDX. Oral Dis

  25. Akesson K, Grynpas MD, Hancock RG, Odselius R, Obrant KJ (1994) Energy-dispersive X-ray microanalysis of the bone mineral content in human trabecular bone: a comparison with ICPES and neutron activation analysis. Calcif Tissue Int 55:236–239

    Article  PubMed  CAS  Google Scholar 

  26. Suzuki K, Anada T, Miyazaki T, Miyatake N, Honda Y, Kishimoto KN, Hosaka M, Imaizumi H, Itoi E, Suzuki O (2014) Effect of addition of hyaluronic acids on the osteoconductivity and biodegradability of synthetic octacalcium phosphate. Acta Biomater 10:531–543

    Article  PubMed  CAS  Google Scholar 

  27. Legros R, Balmain N, Bonel G (1987) Age-related changes in mineral of rat and bovine cortical bone. Calcif Tissue Int 41:137–144

    Article  PubMed  CAS  Google Scholar 

  28. Ferguson VL, Ayers RA, Bateman TA, Simske SJ (2003) Bone development and age-related bone loss in male C57BL/6J mice. Bone 33:387–398

    Article  PubMed  Google Scholar 

  29. Akkus O, Adar F, Schaffler MB (2004) Age-related changes in physicochemical properties of mineral crystals are related to impaired mechanical function of cortical bone. Bone 34:443–453

    Article  PubMed  CAS  Google Scholar 

  30. Miller LM, Little W, Schirmer A, Sheik F, Busa B, Judex S (2007) Accretion of bone quantity and quality in the developing mouse skeleton. J Bone Miner Res 22:1037–1045

    Article  PubMed  Google Scholar 

  31. Donnelly E, Boskey AL, Baker SP, van der Meulen MC (2010) Effects of tissue age on bone tissue material composition and nanomechanical properties in the rat cortex. J Biomed Mater Res A 92:1048–1056

    PubMed  PubMed Central  Google Scholar 

  32. Tarnowski CP, Ignelzi MA Jr, Morris MD (2002) Mineralization of developing mouse calvaria as revealed by Raman microspectroscopy. J Bone Miner Res 17:1118–1126

    Article  PubMed  Google Scholar 

  33. Crane NJ, Popescu V, Morris MD, Steenhuis P, Ignelzi MA Jr (2006) Raman spectroscopic evidence for octacalcium phosphate and other transient mineral species deposited during intramembranous mineralization. Bone 39:434–442

    Article  PubMed  CAS  Google Scholar 

  34. Xie J, Riley C, Chittur K (2001) Effect of albumin on brushite transformation to hydroxyapatite. J Biomed Mater Res 57:357–365

    Article  PubMed  CAS  Google Scholar 

  35. Mandel S, Tas AC (2010) Brushite (CaHPO4·2H2O) to octacalcium phosphate (Ca8(HPO4)2(PO4)4·5H2O) transformation in DMEM solutions at 36.5°C. Mater Sci Eng C 30:245–254

    Article  CAS  Google Scholar 

  36. Campi G, Ricci A, Guagliardi A, Giannini C, Lagomarsino S, Cancedda R, Mastrogiacomo M, Cedola A (2012) Early stage mineralization in tissue engineering mapped by high resolution X-ray microdiffraction. Acta Biomater 8:3411–3418

    Article  PubMed  CAS  Google Scholar 

  37. Mahamid J, Aichmayer B, Shimoni E, Ziblat R, Li C, Siegel S, Paris O, Fratzl P, Weiner S, Addadi L (2010) Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to the bone in zebrafish fin rays. Proc Natl Acad Sci U S A 107:6316–6321

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Beniash E, Metzler RA, Lam RS, Gilbert PU (2009) Transient amorphous calcium phosphate in forming enamel. J Struct Biol 166:133–143

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Mahamid J, Addadi L, Weiner S (2011) Crystallization pathways in bone. Cells Tissues Organs 194:92–97

    Article  PubMed  CAS  Google Scholar 

  40. Allori AC, Sailon AM, Warren SM (2008) Biological basis of bone formation, remodeling, and repair-part II: extracellular matrix. Tissue Eng Part B 14:275–283

    Article  CAS  Google Scholar 

  41. Nikdin H, Olsson M-L, Hultenby K, Sugars RV (2012) Osteoadherin accumulates in the predentin towards the mineralization front in the developing tooth. PLoS One 7:e31525

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Sasano Y, Zhu JX, Tsubota M et al (2002) Gene expression of MMP8 and MMP13 during embryonic development of bone and cartilage in the rat mandible and hind limb. J Histochem Cytochem 50:325–332

    Article  PubMed  CAS  Google Scholar 

  43. Maruya Y, Sasano Y, Takahashi I, Kagayama M, Mayanagi H (2003) Expression of extracellular matrix molecules, MMPs and TIMPs in alveolar bone, cementum and periodontal ligaments during rat tooth eruption. J Electron Microsc 52:593–604

    Article  CAS  Google Scholar 

  44. Itagaki T, Honma T, Takahashi I, Echigo S, Sasano Y (2008) Quantitative analysis and localization of mRNA transcripts of type I collagen, osteocalcin, MMP 2, MMP 8 and MMP 13 during bone healing in a rat calvarial experimental defect model. Anat Rec 291:1038–1046

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported in part by Grants-in-424 Aid (24792170, 23592694, 23106010, 25932006, 25670829, 26293417) from the Japan Society for the Promotion of Science.

Conflict of interest

The authors declare they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuyuki Sasano.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henmi, A., Okata, H., Anada, T. et al. Bone matrix calcification during embryonic and postembryonic rat calvarial development assessed by SEM–EDX spectroscopy, XRD, and FTIR spectroscopy. J Bone Miner Metab 34, 41–50 (2016). https://doi.org/10.1007/s00774-014-0647-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-014-0647-x

Keywords

Navigation