Skip to main content

Advertisement

Log in

Zoledronic acid administration failed to prevent bone loss at the knee in persons with acute spinal cord injury: an observational cohort study

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

After acute spinal cord injury (SCI), rapid depletion of the sublesional skeleton occurs, particularly at the distal femur and proximal tibia. Subsequently, fragility fractures of the knee may occur. We determined the efficacy of zoledronic acid to prevent sublesional bone mineral density (BMD) loss at 6 and 12 months after acute SCI. Thirteen subjects with acute motor-complete SCI were prospectively studied: 6 patients received zoledronic acid (5 mg) and 7 subjects did not receive the drug (controls). Zoledronic acid was administered intravenously within 16 weeks of acute injury. Areal BMD was performed by dual energy X-ray absorptiometry at baseline, 6, and 12 months after administration of drug. The treatment group demonstrated sparing of BMD at the total hip at month 6 (p < 0.0006) and at month 12 (p < 0.01). In contrast to the findings at the hip, the treatment group had a greater loss of BMD compared to the control group at the distal femur and proximal tibia at month 6 (−7.9 % ± 3.4 vs.−2.7 % ± 5.0, respectively, p = 0.054; and −10.5 % ± 6.4 vs. −4.8 % ± 6.8, respectively, p = NS) and at month 12 (−18.5 % ± 3.9 vs. −8.4 % ± 7.2, respectively, p = 0.01; and −20.4 % ± 8.8 vs.−7.9 % ± 12.3, respectively, p = 0.06). A single dose of zoledronic acid administered soon after acute SCI reduced the %BMD loss at the hip, but appeared to have no effect to prevent %BMD loss at the knee, the site where fracture risk is greatest in persons with SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Biering-Sorensen F, Bohr HH, Schaadt OP (1990) Longitudinal study of bone mineral content in the lumbar spine, the forearm and the lower extremities after spinal cord injury. Eur J Clin Invest 20:330–335

    Article  CAS  PubMed  Google Scholar 

  2. Garland DE, Stewart CA, Adkins RH, Hu SS, Rosen C, Liotta FJ, Weinstein DA (1992) Osteoporosis after spinal cord injury. J Orthop Res 10:371–378

    Article  CAS  PubMed  Google Scholar 

  3. Ragnarsson KT, Sell GH (1981) Lower extremity fractures after spinal cord injury: a retrospective study. Arch Phys Med Rehabil 62:418–423

    CAS  PubMed  Google Scholar 

  4. Garland DE, Adkins RH, Scott M, Singh H, Massih M, Stewart C (2004) Bone loss at the os calcis compared with bone loss at the knee in individuals with spinal cord injury. J Spinal Cord Med 27:207–211

    PubMed  Google Scholar 

  5. Lazo MG, Shirazi P, Sam M, Giobbie-Hurder A, Blacconiere MJ, Muppidi M (2001) Osteoporosis and risk of fracture in men with spinal cord injury. Spinal Cord 39:208–214

    Article  CAS  PubMed  Google Scholar 

  6. Wilmet E, Ismail AA, Heilporn A, Welraeds D, Bergmann P (1995) Longitudinal study of the bone mineral content and of soft tissue composition after spinal cord section. Paraplegia 33:674–677

    Article  CAS  PubMed  Google Scholar 

  7. Bauman WA, Spungen AM, Wang J, Pierson RN Jr, Schwartz E (1999) Continuous loss of bone during chronic immobilization: a monozygotic twin study. Osteoporos Int 10:123–127

    Article  CAS  PubMed  Google Scholar 

  8. Giangregorio L, McCartney N (2006) Bone loss and muscle atrophy in spinal cord injury: epidemiology, fracture prediction, and rehabilitation strategies. J Spinal Cord Med 29:489–500

    PubMed Central  PubMed  Google Scholar 

  9. Jiang SD, Dai LY, Jiang LS (2006) Osteoporosis after spinal cord injury. Osteoporos Int 17:180–192

    Article  PubMed  Google Scholar 

  10. Eser P, Frotzler A, Zehnder Y, Wick L, Knecht H, Denoth J, Schiessl H (2004) Relationship between the duration of paralysis and bone structure: a pQCT study of spinal cord injured individuals. Bone 34:869–880

    Article  CAS  PubMed  Google Scholar 

  11. Thompson DD, Seedor JG, Weinreb M, Rosini S, Rodan GA (1990) Aminohydroxybutane bisphosphonate inhibits bone loss due to immobilization in rats. J Bone Miner Res 5:279–286

    Article  CAS  PubMed  Google Scholar 

  12. Shapiro J, Smith B, Beck T, Ballard P, Dapthary M, BrintzenhofeSzoc K, Caminis J (2007) Treatment with zoledronic acid ameliorates negative geometric changes in the proximal femur following acute spinal cord injury. Calcif Tissue Int 80:316–322

    Article  CAS  PubMed  Google Scholar 

  13. Bubbear JS, Gall A, Middleton FR, Ferguson-Pell M, Swaminathan R, Keen RW (2011) Early treatment with zoledronic acid prevents bone loss at the hip following acute spinal cord injury. Osteoporos Int 22:271–279

    Article  CAS  PubMed  Google Scholar 

  14. Shields RK, Schlechte J, Dudley-Javoroski S, Zwart BD, Clark SD, Grant SA, Mattiace VM (2005) Bone mineral density after spinal cord injury: a reliable method for knee measurement. Arch Phys Med Rehabil 86:1969–1973

    Article  PubMed Central  PubMed  Google Scholar 

  15. Morse LR, Lazzari AA, Battaglino R, Stolzmann KL, Matthess KR, Gagnon DR, Davis SA, Garshick E (2009) Dual energy x-ray absorptiometry of the distal femur may be more reliable than the proximal tibia in spinal cord injury. Arch Phys Med Rehabil 90:827–831

    Article  PubMed Central  PubMed  Google Scholar 

  16. Baim S, Wilson CR, Lewiecki EM, Luckey MM, Robert W, Downs J, Lentle B (2005) Precision assessment and radiation safety for dual-energy X-ray absorptiometry. J Clin Densitometry 8:371–378

    Article  Google Scholar 

  17. Diez-Perez A, Adachi JD, Agnusdei D, Bilezikian JP, Compston JE, Cummings SR, Eastell R, Eriksen EF, Gonzalez-Macias J, Liberman UA, Wahl DA, Seeman E, Kanis JA, Cooper C, Group ICIRW (2012) Treatment failure in osteoporosis. Osteoporos Int 23:2769–2774

    Article  CAS  PubMed  Google Scholar 

  18. Chantraine A, Nusgens B, Lapiere CM (1986) Bone remodeling during the development of osteoporosis in paraplegia. Calcif Tissue Int 38:323–327

    Article  CAS  PubMed  Google Scholar 

  19. Minaire P, Neunier P, Edouard C, Bernard J, Courpron P, Bourret J (1974) Quantitative histological data on disuse osteoporosis: comparison with biological data. Calcif Tissue Res 17:57–73

    Article  CAS  PubMed  Google Scholar 

  20. Bergmann P, Heilporn A, Schoutens A, Paternot J, Tricot A (1977) Longitudinal study of calcium and bone metabolism in paraplegic patients. Paraplegia 15:147–159 Epub 1977/08/01

    Article  CAS  PubMed  Google Scholar 

  21. Roberts D, Lee W, Cuneo RC, Wittmann J, Ward G, Flatman R et al (1998) Longitudinal study of bone turnover after acute spinal cord injury. J Clin Endocrinol Metab 83:415–422

    CAS  PubMed  Google Scholar 

  22. Stewart AF, Adler M, Byers CM, Segre GV, Broadus AE (1982) Calcium homeostasis in immobilization: an example of resorptive hypercalciuria. N Engl J Med 306:1136–1140

    Article  CAS  PubMed  Google Scholar 

  23. Reiter AL, Volk A, Vollmar J, Fromm B, Gerner HJ (2007) Changes of basic bone turnover parameters in short-term and long-term patients with spinal cord injury. Eur Spine J 16:771–776

    Article  PubMed Central  PubMed  Google Scholar 

  24. Demulder A, Guns M, Ismail A, Wilmet E, Fondu P, Bergmann P (1998) Increased osteoclast-like cells formation in long-term bone marrow cultures from patients with a spinal cord injury. Calcif Tissue Int 63:396–400

    Article  CAS  PubMed  Google Scholar 

  25. Body JJ, Diel I, Bell R (2004) Profiling the safety and tolerability of bisphosphonates. Semin Oncol 31:73–78

    Article  CAS  PubMed  Google Scholar 

  26. Thompson DD, Seedor JG, Weinreb M, Rosini S, Rodan GA (1990) Aminohydroxybutane bisphosphonate inhibits bone loss due to immobilization in rats. J Bone Miner Res 5:279–286

    Article  CAS  PubMed  Google Scholar 

  27. Shapiro CL, Halabi S, Hars V, Archer L, Weckstein D, Kirshner J, Sikov W, Winer E, Burstein HJ, Hudis C, Isaacs C, Schilsky R, Paskett E (2011) Zoledronic acid preserves bone mineral density in premenopausal women who develop ovarian failure due to adjuvant chemotherapy: final results from CALGB trial 79809. Eur J Cancer 47:683–689

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Gertz BJ, Shao P, Hanson DA, Quan H, Harris ST, Genant HK, Chesnut CH 3rd, Eyre DR (1994) Monitoring bone resorption in early postmenopausal women by an immunoassay for cross-linked collagen peptides in urine. J Bone Miner Res 9:135–142

    Article  CAS  PubMed  Google Scholar 

  29. Garnero P, Shih WJ, Gineyts E, Karpf DB, Delmas PD (1994) Comparison of new biochemical markers of bone turnover in late postmenopausal osteoporotic women in response to alendronate treatment. J Clin Endocrinol Metab 79:1693–1700

    CAS  PubMed  Google Scholar 

  30. Williams CJ, Smith RA, Ball RJ, Wilkinson H (1997) Hypercalcaemia in osteogenesis imperfecta treated with pamidronate. Arch Dis Child 76:169–170

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Li CY, Price C, Delisser K, Nasser P, Laudier D, Clement M, Jepsen KJ, Schaffler MB (2005) Long-term disuse osteoporosis seems less sensitive to bisphosphonate treatment than other osteoporosis. J Bone Miner Res 20:117–124

    Article  CAS  PubMed  Google Scholar 

  32. Kodama Y, Nakayama K, Fuse H, Fukumoto S, Kawahara H, Takahashi H, Kurokawa T, Sekiguchi C, Nakamura T, Matsumoto T (1997) Inhibition of bone resorption by pamidronate cannot restore normal gain in cortical bone mass and strength in tail-suspended rapidly growing rats. J Bone Miner Res 12:1058–1067

    Article  CAS  PubMed  Google Scholar 

  33. Chappard D, Petitjean M, Alexandre C, Vico L, Minaire P, Riffat G (1991) Cortical osteoclasts are less sensitive to etidronate than trabecular osteoclasts. J Bone Miner Res 6:673–680

    Article  CAS  PubMed  Google Scholar 

  34. Bauman WA, Wecht JM, Kirshblum S, Spungen AM, Morrison N, Cirnigliaro C, Schwartz E (2005) Effect of pamidronate administration on bone in patients with acute spinal cord injury. J Rehabil Res Dev 42:305–313

    Article  PubMed  Google Scholar 

  35. Gilchrist NL, Frampton CM, Acland RH, Nicholls MG, March RL, Maguire P, Heard A, Reilly P, Marshall K (2007) Alendronate prevents bone loss in patients with acute spinal cord injury: a randomized, double-blind, placebo-controlled study. J Clin Endocrinol Metab 92:1385–1390

    Article  CAS  PubMed  Google Scholar 

  36. Pearson EG, Nance PW, Leslie WD, Ludwig S (1997) Cyclical etidronate: its effect on bone density in patients with acute spinal cord injury. Arch Phys Med Rehabil 78:269–272

    Article  CAS  PubMed  Google Scholar 

  37. Nance PW, Schryvers O, Leslie W, Ludwig S, Krahn J, Uebelhart D (1999) Intravenous pamidronate attenuates bone density loss after acute spinal cord injury. Arch Phys Med Rehabil 80:243–251

    Article  CAS  PubMed  Google Scholar 

  38. Morse LR, Battaglino RA, Stolzmann KL, Hallett LD, Waddimba A, Gagnon D, Lazzari AA, Garshick E (2009) Osteoporotic fractures and hospitalization risk in chronic spinal cord injury. Osteoporos Int 20:385–392

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Zehnder Y, Luthi M, Michel D, Knecht H, Perrelet R, Neto I, Kraenzlin M, Zach G, Lippuner K (2004) Long-term changes in bone metabolism, bone mineral density, quantitative ultrasound parameters, and fracture incidence after spinal cord injury: a cross-sectional observational study in 100 paraplegic men. Osteoporos Int 15:180–189

    Article  PubMed  Google Scholar 

  40. Bryson JE, Gourlay ML (2009) Bisphosphonate use in acute and chronic spinal cord injury: a systematic review. J Spinal Cord Med 32:215–225

    PubMed Central  PubMed  Google Scholar 

  41. Jiang SD, Jiang LS, Dai LY (2006) Mechanisms of osteoporosis in spinal cord injury. Clin Endocrinol (Oxf) 65:555–565

    Article  CAS  Google Scholar 

  42. Bauman WA, Cardozo CP (2013) Spinal cord injury: skeletal pathophysiology and clinical issues. In: Rosen CJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism, 8th Edition. Wiley, Ames. doi: 10.1002/9781118453926.ch122

  43. Byers JS, Huguenard AL, Kuruppu D, Liu NK, Xu XM, Sengelaub DR (2012) Neuroprotective effects of testosterone on motoneuron and muscle morphology following spinal cord injury. J Comp Neurol 520:2683–2696

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Bonewald LF, Johnson ML (2008) Osteocytes, mechanosensing and Wnt signaling. Bone 42:606–615

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Qin W, Li X, Cao J, Collier L, Peng Y, Feng J, Li J, Qin Y, Hua Zhu Ke HZ, Bauman WA, Cardozo C. Mice with sclerostin gene deficiency largely spare bone loss after acute spinal cord injury. Accepted for presentation at the 2014 Annual Meeting of the American Society of Bone and Mineral Research

  46. Canalis E, Mazziotti G, Giustina A, Bilezikian JP (2007) Glucocorticoid-induced osteoporosis: pathophysiology and therapy. Osteoporos Int 18:1319–1328

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the James J. Peters Veterans Affairs Medical Center, Bronx, NY, Department of Veterans Affairs Rehabilitation Research & Development Service, and Kessler Institute for Rehabilitation, West Orange, NJ, for their support to perform this work. Novartis Pharmaceuticals Corporation provided drug gratis to perform this clinical trial. This work was funded by a Rehabilitation Research & Development Center of Excellence for the Medical Consequences of Spinal Cord Injury grant (#B9212-C, B4162-C). Veteran Affairs Rehabilitation Research and Development Service (#B9212-C, #B4162-C) and the James J. Peters Veterans Affairs Medical Center. Novartis Pharmaceuticals graciously provided zoledronic acid (Reclast 5 mg) for use in our clinical trial.

Conflicts of interest

The author has no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William A. Bauman.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauman, W.A., Cirnigliaro, C.M., La Fountaine, M.F. et al. Zoledronic acid administration failed to prevent bone loss at the knee in persons with acute spinal cord injury: an observational cohort study. J Bone Miner Metab 33, 410–421 (2015). https://doi.org/10.1007/s00774-014-0602-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-014-0602-x

Keywords

Navigation